Help


from Wikipedia
« »  
Every Boolean algebra ( A, ∧, ∨) gives rise to a ring ( A, +, ·) by defining a + b := ( a ∧ ¬ b ) ∨ ( b ∧ ¬ a ) = ( a ∨ b ) ∧ ¬( a ∧ b ) ( this operation is called symmetric difference in the case of sets and XOR in the case of logic ) and a · b := a ∧ b. The zero element of this ring coincides with the 0 of the Boolean algebra ; the multiplicative identity element of the ring is the 1 of the Boolean algebra.
This ring has the property that a · a = a for all a in A ; rings with this property are called Boolean rings.

1.790 seconds.