Help


[permalink] [id link]
+
Page "Particle identification" ¶ 6
from Wikipedia
Edit
Promote Demote Fragment Fix

Some Related Sentences

Electrons and detector
Electrons in the conduction band can respond to the electric field in the detector, and therefore move to the positive contact that is creating the electrical field.

Electrons and all
Electrons can absorb energy from photons when irradiated, but they usually follow an " all or nothing " principle.
Electrons scatter from all of these, resulting in resistance to their flow.
Electrons have the least mass of all the charged leptons.
Electrons are those things about which all the statements of the theory are true.
Electrons are reflected from the outside surface of the sheath while all positive ions which reach the sheath are attracted to the electrode.

Electrons and their
Electrons in the emitters, or the " holes " in the collectors, would cluster at the surface of the crystal where they could find their opposite charge " floating around " in the air ( or water ).
Electrons will be accelerated in the opposite direction to the electric field by the average electric field at their location.
Electrons in the closer orbitals experience greater forces of electrostatic attraction ; thus, their removal requires increasingly more energy.
Electrons ( and positive charge carriers ) come with their own built-in negative feedback.
In 1936, the two published a paper, " The Passage of Fast Electrons and the Theory of Cosmic Showers " in the Proceedings of the Royal Society, Series A, in which they used their theory to describe how primary cosmic rays from outer space interact with the upper atmosphere to produce particles observed at the ground level.
Electrons do not penetrate as deeply into matter as X-rays, hence electron diffraction reveals structure near the surface ; neutrons do penetrate easily and have an advantage that they possess an intrinsic magnetic moment that causes them to interact differently with atoms having different alignments of their magnetic moments.
They ’ ll carry it with them in their future life …. And this future life in the body of eons will be very long, almost as long as the Universe itself .” Suggests Charon, “ the electrons which form my body are not only carriers of what I call ‘ my ’ spirit, but, in fact constitute my spirit itself .” Electrons are sent individually into the Universe to learn and to increase the order of the Universe ; “ the psychic level of the whole Universe progressively elevates itself … during the ‘ successively lived experiences ’ of elemental matter .” The goal of each electron is to increase its energy to the highest level of sustainable excitement ; that is, to contain the most information within the largest stable system of organization possible.
Electrons also have a long ballistic length at this temperature ; their mean free path can be several micrometres.
Electrons were ideal for the role, as they are abundant and easily accelerated to high energies due to their electric charge.
Electrons in such orbitals are strongly localized and therefore easily retain their magnetic moments and function as paramagnetic centers.
# Electrons ( negatively charged ) are knocked loose from their atoms, causing an electric potential difference.

Electrons and energy
Electrons that are bound to atoms possess a set of stable energy levels, or orbitals, and can undergo transitions between them by absorbing or emitting photons that match the energy differences between the levels.
Electrons in an s orbital benefit from closer proximity to the positively charged atom nucleus, and are therefore lower in energy.
Electrons can only exist in certain energy levels.
Electrons behave as beams of energy, and in the presence of a potential U ( z ), assuming 1-dimensional case, the energy levels ψ < sub > n </ sub >( z ) of the electrons are given by solutions to Schrödinger ’ s equation,
Electrons ejected from a solid will generally undergo multiple scattering events and lose energy in the form of collective electron density oscillations called plasmons.
Electrons in atoms and molecules can change ( make transitions in ) energy levels by emitting or absorbing a photon ( of electromagnetic radiation ) whose energy must be exactly equal to the energy difference between the two levels.
Electrons can take on any energy within an unfilled band.
Electrons can gain enough energy to jump to the conduction band by absorbing either a phonon ( heat ) or a photon ( light ).
Electrons are accelerated to high speeds in several stages to achieve a final energy that is typically in the GeV range.
Electrons in solids have a chemical potential, defined the same way as the chemical potential of a chemical species: The change in free energy when electrons are added or removed from the system.
Electrons are fermions, and obey the exclusion principle, which means that no two electrons can share a single energy state within an atom ( if spin is ignored ).
Electrons are accelerated to high speeds in several stages to achieve a final energy that is typically in the gigaelectronvolt range.
Electrons exist in energy levels within an atom.
Electrons can move quite freely between energy levels without a high energy cost.
Electrons traversing the periodic magnet structure are forced to undergo oscillations and thus to radiate energy.
Electrons emitted from the cathode possess very low energy of only a few eV.

Electrons and electromagnetic
Electrons are bound by electromagnetic wave mechanics into orbitals around atomic nuclei to form atoms, which are the building blocks of molecules.
Electrons and how they interact with electromagnetic fields are important in our understanding of chemistry and physics.
Electrons and how they interact with electromagnetic fields are important in our understanding of chemistry and physics.
Electrons which are trapped in an electromagnetic cavity are in a bound state and thus organise themselves as they do in a regular atom, thus expressing chemical-like behaviour.

Electrons and .
Electrons form notional shells around the nucleus.
Electrons that populate a shell are said to be in a bound state.
# Electrons jump between orbitals in a particle-like fashion.
These he interpreted as " negative-energy electrons " and attempted to identify them with protons in his 1930 paper A Theory of Electrons and Protons However, these " negative-energy electrons " turned out to be positrons, and not protons.
Electrons ( the other major component of the atom ) are leptons.
Electrons are the charge carriers in metals and they follow an erratic path, bouncing from atom to atom, but generally drifting in the opposite direction of the electric field.
Electrons were first discovered as the constituents of cathode rays.
Electrons are extracted from metal electrodes either by heating the electrode, causing thermionic emission, or by applying a strong electric field and causing field electron emission.
Electrons can also be emitted from the electrodes of certain metals when light of frequency greater than the threshold frequency falls on it.
Electrons which diffuse from the cathode into the P-doped layer, or anode, become what is termed " minority carriers " and tend to recombine there with the majority carriers, which are holes, on a timescale characteristic of the material which is the p-type minority carrier lifetime.
Electrons are responsible for emission of most EMR because they have low mass, and therefore are easily accelerated by a variety of mechanisms.
Electrons are at the heart of cathode ray tubes, which have been used extensively as display devices in laboratory instruments, computer monitors and television sets.
: Electrons are transferred from iron reducing oxygen in the atmosphere into water on the cathode, which is placed in another region of the metal.
Electrons flow in the external circuit.
Electrons flow from the source terminal towards the drain terminal if influenced by an applied voltage.
Electrons are drawn from the anode to the cathode through an external circuit, producing direct current electricity.
Electrons in this state are 45 % likely to be found within the solid body shown.
His most noted publication was the famous 1919 article " The Arrangement of Electrons in Atoms and Molecules " in which, building on Gilbert N. Lewis's cubical atom theory and Walther Kossel's chemical bonding theory, he outlined his " concentric theory of atomic structure ".
Electrons are particulate radiation and, hence, have cross section many times larger than photons, so that they do not penetrate the product beyond a few inches, depending on product density.
Electrons that belong to different molecules start " fleeing " and avoiding each other at the short intermolecular distances, which is frequently described as formation of " instantaneous dipoles " that attract each other.
Electrons emitted from the filament move several times in back and forth movements around the grid before finally entering the grid.

0.147 seconds.