Help


[permalink] [id link]
+
Page "Chemical polarity" ¶ 1
from Wikipedia
Edit
Promote Demote Fragment Fix

Some Related Sentences

Electrons and are
Electrons that are bound to atoms possess a set of stable energy levels, or orbitals, and can undergo transitions between them by absorbing or emitting photons that match the energy differences between the levels.
Electrons that populate a shell are said to be in a bound state.
Electrons in an s orbital benefit from closer proximity to the positively charged atom nucleus, and are therefore lower in energy.
Electrons ( the other major component of the atom ) are leptons.
Electrons are the charge carriers in metals and they follow an erratic path, bouncing from atom to atom, but generally drifting in the opposite direction of the electric field.
* Electrons are also transferred to the electron acceptor Q, forming QH < sub > 2 </ sub >.
Electrons are extracted from metal electrodes either by heating the electrode, causing thermionic emission, or by applying a strong electric field and causing field electron emission.
Electrons which diffuse from the cathode into the P-doped layer, or anode, become what is termed " minority carriers " and tend to recombine there with the majority carriers, which are holes, on a timescale characteristic of the material which is the p-type minority carrier lifetime.
Electrons are responsible for emission of most EMR because they have low mass, and therefore are easily accelerated by a variety of mechanisms.
Electrons are at the heart of cathode ray tubes, which have been used extensively as display devices in laboratory instruments, computer monitors and television sets.
Electrons are bound by electromagnetic wave mechanics into orbitals around atomic nuclei to form atoms, which are the building blocks of molecules.
Two of the most popular are " OIL RIG " ( Oxidation Is Loss, Reduction Is Gain ) and " LEO " the lion says " GER " ( Lose Electrons: Oxidization, Gain Electrons: Reduction ).
: Electrons are transferred from iron reducing oxygen in the atmosphere into water on the cathode, which is placed in another region of the metal.
Electrons are drawn from the anode to the cathode through an external circuit, producing direct current electricity.
Electrons in this state are 45 % likely to be found within the solid body shown.
Electrons are particulate radiation and, hence, have cross section many times larger than photons, so that they do not penetrate the product beyond a few inches, depending on product density.
Electrons and how they interact with electromagnetic fields are important in our understanding of chemistry and physics.
Electrons are fermions with S = 1 / 2 ; quanta of light are bosons with S = 1.
Electrons behave as beams of energy, and in the presence of a potential U ( z ), assuming 1-dimensional case, the energy levels ψ < sub > n </ sub >( z ) of the electrons are given by solutions to Schrödinger ’ s equation,
Electrons and how they interact with electromagnetic fields are important in our understanding of chemistry and physics.
Electrons remain bound to atoms but are able to transfer to adjacent atoms.

Electrons and equally
Electrons in covalent bonds are split equally between the atoms involved in the bond.

Electrons and between
# Electrons jump between orbitals in a particle-like fashion.
Electrons and ions in the magnetosphere, for example, will bounce back and forth between the stronger fields at the poles.
Electrons in atoms and molecules can change ( make transitions in ) energy levels by emitting or absorbing a photon ( of electromagnetic radiation ) whose energy must be exactly equal to the energy difference between the two levels.
Electrons can be exchanged between materials on contact ; materials with weakly bound electrons tend to lose them, while materials with sparsely filled outer shells tend to gain them.
# Electrons travel ballistically between electrodes ( i. e., no scattering ).
Electrons cannot cross the insulating gap between the laminations and so are unable to circulate on wide arcs.
Electrons can move quite freely between energy levels without a high energy cost.
Electrons in non-bonding orbitals tend to be in deep orbitals ( nearly atomic orbitals ) associated almost entirely with one nucleus or the other, and thus they spend equal time between and not between nuclei.

Electrons and two
Electrons are fermions, and obey the exclusion principle, which means that no two electrons can share a single energy state within an atom ( if spin is ignored ).
In 1936, the two published a paper, " The Passage of Fast Electrons and the Theory of Cosmic Showers " in the Proceedings of the Royal Society, Series A, in which they used their theory to describe how primary cosmic rays from outer space interact with the upper atmosphere to produce particles observed at the ground level.

Electrons and bonding
The term " covalence " in regard to bonding was first used in 1919 by Irving Langmuir in a Journal of the American Chemical Society article entitled " The Arrangement of Electrons in Atoms and Molecules ".
His most noted publication was the famous 1919 article " The Arrangement of Electrons in Atoms and Molecules " in which, building on Gilbert N. Lewis's cubical atom theory and Walther Kossel's chemical bonding theory, he outlined his " concentric theory of atomic structure ".

Electrons and atoms
Electrons from ionized atoms interact mainly with neutral atoms, causing thermal bremsstrahlung radiation.
Electrons are one of the components of atoms, alongside protons and neutrons.
* Electrons, atoms and any other object ( such as a baseball, as described by quantum physics )
Electrons normally exist in pairs in specific orbitals in atoms or molecules.
Electrons can be used in these situations, whereas X-rays cannot, because electrons interact more strongly with atoms than X-rays do.
Electrons do not penetrate as deeply into matter as X-rays, hence electron diffraction reveals structure near the surface ; neutrons do penetrate easily and have an advantage that they possess an intrinsic magnetic moment that causes them to interact differently with atoms having different alignments of their magnetic moments.
# Electrons ( negatively charged ) are knocked loose from their atoms, causing an electric potential difference.

0.141 seconds.