Help


[permalink] [id link]
+
Page "Cathode" ¶ 17
from Wikipedia
Edit
Promote Demote Fragment Fix

Some Related Sentences

Electrons and can
Electrons that are bound to atoms possess a set of stable energy levels, or orbitals, and can undergo transitions between them by absorbing or emitting photons that match the energy differences between the levels.
Electrons can absorb energy from photons when irradiated, but they usually follow an " all or nothing " principle.
Electrons can only exist in certain energy levels.
Electrons at these states can be easily excited to the conduction band, becoming free electrons, at room temperature.
Electrons in atoms and molecules can change ( make transitions in ) energy levels by emitting or absorbing a photon ( of electromagnetic radiation ) whose energy must be exactly equal to the energy difference between the two levels.
Electrons can also be completely removed from a chemical species such as an atom, molecule, or ion.
Electrons can take on any energy within an unfilled band.
Electrons can gain enough energy to jump to the conduction band by absorbing either a phonon ( heat ) or a photon ( light ).
Electrons can be exchanged between materials on contact ; materials with weakly bound electrons tend to lose them, while materials with sparsely filled outer shells tend to gain them.
* Electrons are fermions, but when they pair up into Cooper pairs they act as bosons, and so can collectively form a coherent state at low temperatures.
Electrons are fermions, and obey the exclusion principle, which means that no two electrons can share a single energy state within an atom ( if spin is ignored ).
Electrons can only reach ( and " illuminate ") a given plate element if both the grid and the plate are at a positive potential with respect to the cathode.
Electrons can move quite freely between energy levels without a high energy cost.
Electrons can transfer from one band to the other by means of carrier generation and recombination processes.
Electrons, within an electron shell around an atom, tend to distribute themselves as far apart from each other, within the given shell, as they can ( due to each one being negatively charged ).
Electrons released on impact escape to the layer of TiO < sub > 2 </ sub > and from there diffuse, through the electrolyte, as the dye can be tuned to the visible spectrum much higher power can be produced.
Electrons in the conduction band can respond to the electric field in the detector, and therefore move to the positive contact that is creating the electrical field.
Electrons can be used in these situations, whereas X-rays cannot, because electrons interact more strongly with atoms than X-rays do.
Electrons also have a long ballistic length at this temperature ; their mean free path can be several micrometres.
Electrons move according to the cross product of the magnetic field and the electron propagation vector, such that, in an infinite uniform field moving electrons take a circular motion at a constant radius dependent upon electron velocity and field strength according to the following equation, which can be derived from circular motion:
Electrons occupying a HOMO of a sigma bond can get excited to the LUMO of that bond.
Electrons and positrons can be discriminated from other charged particles using the emission of transition radiation, X-rays emitted when the particles cross many layers of thin materials.

Electrons and also
* Electrons are also transferred to the electron acceptor Q, forming QH < sub > 2 </ sub >.
Electrons excited to the conduction band also leave behind electron holes, i. e. unoccupied states in the valence band.
Electrons also conduct electric current through conductive solids, and the thermal and electrical conductivities of most metals have about the same ratio.
For instance, " Electrons attract protons " and " Electrons have negative charge " employ the terms " protons " and " negative charge " ( with the latter also implicitly using the concept of " charge ").
Electrons and many elementary particles also have intrinsic magnetic moments, an explanation of which requires a quantum mechanical treatment and relates to the intrinsic angular momentum of the particles as discussed in the article electron magnetic dipole moment.

Electrons and be
Electrons that populate a shell are said to be in a bound state.
These he interpreted as " negative-energy electrons " and attempted to identify them with protons in his 1930 paper A Theory of Electrons and Protons However, these " negative-energy electrons " turned out to be positrons, and not protons.
Electrons in this state are 45 % likely to be found within the solid body shown.
Electrons emitted in this manner may be referred to as photoelectrons.
Electrons that populate a shell are said to be in a bound state.
Electrons will be accelerated in the opposite direction to the electric field by the average electric field at their location.
Electrons in non-bonding orbitals tend to be in deep orbitals ( nearly atomic orbitals ) associated almost entirely with one nucleus or the other, and thus they spend equal time between and not between nuclei.
They ’ ll carry it with them in their future life …. And this future life in the body of eons will be very long, almost as long as the Universe itself .” Suggests Charon, “ the electrons which form my body are not only carriers of what I call ‘ my ’ spirit, but, in fact constitute my spirit itself .” Electrons are sent individually into the Universe to learn and to increase the order of the Universe ; “ the psychic level of the whole Universe progressively elevates itself … during the ‘ successively lived experiences ’ of elemental matter .” The goal of each electron is to increase its energy to the highest level of sustainable excitement ; that is, to contain the most information within the largest stable system of organization possible.

Electrons and emitted
Electrons emitted from the filament move several times in back and forth movements around the grid before finally entering the grid.
Electrons emitted from the cathode possess very low energy of only a few eV.
Electrons emitted at any point are accelerated a modest distance down the funnel before impacting the surface, perhaps on the opposite side of the funnel.

Electrons and from
Electrons in an s orbital benefit from closer proximity to the positively charged atom nucleus, and are therefore lower in energy.
Electrons are the charge carriers in metals and they follow an erratic path, bouncing from atom to atom, but generally drifting in the opposite direction of the electric field.
Electrons are extracted from metal electrodes either by heating the electrode, causing thermionic emission, or by applying a strong electric field and causing field electron emission.
Electrons which diffuse from the cathode into the P-doped layer, or anode, become what is termed " minority carriers " and tend to recombine there with the majority carriers, which are holes, on a timescale characteristic of the material which is the p-type minority carrier lifetime.
: Electrons are transferred from iron reducing oxygen in the atmosphere into water on the cathode, which is placed in another region of the metal.
Electrons flow from the source terminal towards the drain terminal if influenced by an applied voltage.
Electrons are drawn from the anode to the cathode through an external circuit, producing direct current electricity.
Electrons ejected from a solid will generally undergo multiple scattering events and lose energy in the form of collective electron density oscillations called plasmons.
Electrons tunnel from one wire to another through the island.
Electrons from ionized atoms interact mainly with neutral atoms, causing thermal bremsstrahlung radiation.
Electrons scatter from all of these, resulting in resistance to their flow.
Electrons then leak from the belt to the upper comb and to the terminal, leaving the belt positively charged as it returns down and the terminal negatively charged.
Electrons are able to jump from one band to another.
Synchrotron radiation was named after its discovery in a General Electric synchrotron accelerator built in 1946 and announced in May 1947 by Frank Elder, Anatole Gurewitsch, Robert Langmuir, and Herb Pollock in a letter entitled " Radiation from Electrons in a Synchrotron ".
Electrons in this system are not conserved, but are rather continually entering from oxidized 2H < sub > 2 </ sub > O ( O < sub > 2 </ sub > + 4 H < sup >+</ sup > + 4 e < sup >-</ sup >) and exiting with NADP < sup >+</ sup > when it is finally reduced to NADPH.
Electrons are usually generated in an electron microscope by a process known as thermionic emission from a filament, usually tungsten, in the same manner as a light bulb, or alternatively by field electron emission.
Electrons in solids have a chemical potential, defined the same way as the chemical potential of a chemical species: The change in free energy when electrons are added or removed from the system.
Electrons flow from the negative terminal of the power supply up the negative rail, across the projectile, and down the positive rail, back to the power supply.
Electrons ionized from the neutral gas are not useful in sustaining the negative corona process by generating secondary electrons for further avalanches, as the general movement of electrons in a negative corona is outward from the curved electrode.
Electrons emerging from the accelerator have energies up to 25MeV and are moving an appreciable fraction ( 95-99 + percent ) of the speed of light ( relativistic velocities ).

0.149 seconds.