Help


[permalink] [id link]
+
Page "Geometrization conjecture" ¶ 5
from Wikipedia
Edit
Promote Demote Fragment Fix

Some Related Sentences

Every and closed
Every time I closed my eyes, I saw Gray Eyes rushing at me with a knife.
Every field has an algebraic extension which is algebraically closed ( called its algebraic closure ), but proving this in general requires some form of the axiom of choice.
* Every unital real Banach algebra with no zero divisors, and in which every principal ideal is closed, is isomorphic to the reals, the complexes, or the quaternions.
Every character is automatically continuous from A to C, since the kernel of a character is a maximal ideal, which is closed.
* Every continuous map from a compact space to a Hausdorff space is closed and proper ( i. e., the pre-image of a compact set is compact.
* Every closed subgroup of a profinite group is itself profinite ; the topology arising from the profiniteness agrees with the subspace topology.
Every open subgroup H is also closed, since the complement of H is the open set given by the union of open sets gH for g in G
* Every closed nowhere dense set is the boundary of an open set.
Every map that is injective, continuous and either open or closed is an embedding ; however there are also embeddings which are neither open nor closed.
Every base he closed resulted in a new construction project elsewhere to expand another base, relocation of forces projects and other related spending.
Every year the central business district ( with corners at the Municipal Building, Grand Street Fire House and Croton-Harmon High School ) is closed to automobile traffic for music, American food, local fund raisers, traveling, and local artists.
The generalized Poincaré conjecture states that Every simply connected, closed n-manifold is homeomorphic to the n-sphere.
Every closed subspace of a reflexive space is reflexive.
: Every oriented prime closed 3-manifold can be cut along tori, so that the interior of each of the resulting manifolds has a geometric structure with finite volume.
* Every integrable subbundle of the tangent bundle — that is, one whose sections are closed under the Lie bracket — also defines a Lie algebroid.
* Every irreducible closed subset of P < sup > n </ sup >( k ) of codimension one is a hypersurface ; i. e., the zero set of some homogeneous polynomial.
Every October the high street is closed for the two Saturdays either side of 11 October for the Marlborough Mop Fair.
Every closed point of Hilb ( X ) corresponds to a closed subscheme of a fixed scheme X, and every closed subscheme is represented by such a point.
Every homeomorphism is open, closed, and continuous.
Every closed curve c on X is homologous to for some simple closed curves c < sub > i </ sub >, that is,

Every and 3-manifold
Every 3-manifold has many embedded 2-spheres, and a 2-sphere embedded in a 3-manifold never has a compressing disc.
* Moise's theorem – Every 3-manifold has a triangulation, unique up to common subdivision
Every closed, orientable, connected 3-manifold is obtained by performing Dehn surgery on a link in the 3-sphere.

Every and has
Every soldier in the army has, somewhere, relatives who are close to starvation.
Every woman has had the experience of saying no when she meant yes, and saying yes when she meant no.
Every detail in his interpretation has been beautifully thought out, and of these I would especially cite the delicious laendler touch the pianist brings to the fifth variation ( an obvious indication that he is playing with Viennese musicians ), and the gossamer shading throughout.
Every calculation has been made independently by two workers and checked by one of the editors.
Every retiring person has a different situation facing him.
Every family of Riviera Presbyterian Church has been asked to read the Bible and pray together daily during National Christian Family Week and to undertake one project in which all members of the family participate.
Every community, if it is alive has a spirit, and that spirit is the center of its unity and identity.
`` Every woman in the block has tried that ''.
: Every set has a choice function.
Every such subset has a smallest element, so to specify our choice function we can simply say that it maps each set to the least element of that set.
** Every surjective function has a right inverse.
** Zorn's lemma: Every non-empty partially ordered set in which every chain ( i. e. totally ordered subset ) has an upper bound contains at least one maximal element.
The restricted principle " Every partially ordered set has a maximal totally ordered subset " is also equivalent to AC over ZF.
** Tukey's lemma: Every non-empty collection of finite character has a maximal element with respect to inclusion.
** Antichain principle: Every partially ordered set has a maximal antichain.
** Every vector space has a basis.
* Every small category has a skeleton.
* Every continuous functor on a small-complete category which satisfies the appropriate solution set condition has a left-adjoint ( the Freyd adjoint functor theorem ).
** Every field has an algebraic closure.
** Every field extension has a transcendence basis.
** Every Tychonoff space has a Stone – Čech compactification.
* Every rectangle R is in M. If the rectangle has length h and breadth k then a ( R ) =
Every unit of length has a corresponding unit of area, namely the area of a square with the given side length.
Every ATM cell has an 8-or 12-bit Virtual Path Identifier ( VPI ) and 16-bit Virtual Channel Identifier ( VCI ) pair defined in its header.

0.177 seconds.