Help


[permalink] [id link]
+
Page "Eulerian path" ¶ 1
from Wikipedia
Edit
Promote Demote Fragment Fix

Some Related Sentences

Every and vertex
* Every connected graph G admits a spanning tree, which is a tree that contains every vertex of G and whose edges are edges of G.
Every vertex in a polygon is assigned a texture coordinate ( which in the 2d case is also known as a UV coordinate ) either via explicit assignment or by procedural definition.
Every maximal outerplanar graph satisfies a stronger condition than Hamiltonicity: it is node pancyclic, meaning that for every vertex v and every k in the range from three to the number of vertices in the graph, there is a length-k cycle containing v. A cycle of this length may be found by repeatedly removing a triangle that is connected to the rest of the graph by a single edge, such that the removed vertex is not v, until the outer face of the remaining graph has length k.
Every vertex of an-dimensional box is connected to edges.
Every graph has a harmonious coloring, since it suffices to assign every vertex a distinct color ; thus χ < sub > H </ sub >( G ) ≤ | V ( G )|.
Every triangle has exactly three medians: one running from each vertex to the opposite side.
( Every vertex is related to itself via two length-zero paths, which are identical but nevertheless edge-disjoint.
# Every vertex in G either belongs to D or is adjacent to a vertex in D. That is, D is a dominating set of G.

Every and graph
Every connected graph is an expander ; however, different connected graphs have different expansion parameters.
:"[...] Every invariant and co-variant thus becomes expressible by a graph precisely identical with a Kekuléan diagram or chemicograph.
* Every tree is a bipartite graph and a median graph.
Every tree with only countably many vertices is a planar graph.
* Every connected graph with only countably many vertices admits a normal spanning tree.
In mathematics, Tait's conjecture states that " Every 3-connected planar cubic graph has a Hamiltonian cycle ( along the edges ) through all its vertices ".
Every homomorphism of the Petersen graph to itself that doesn't identify adjacent vertices is an automorphism.
Every directed acyclic graph has a topological ordering, an ordering of the vertices such that the starting endpoint of every edge occurs earlier in the ordering than the ending endpoint of the edge.
* Every planar graph whose faces all have even length is bipartite.
Every Eulerian orientation of a connected graph is a strong orientation, an orientation that makes the resulting directed graph strongly connected.
Every outerplanar graph is a planar graph.
Every outerplanar graph is also a subgraph of a series-parallel graph.
Every forest, and every cactus graph is outerplanar.
Every maximal outerplanar graph with n vertices has exactly 2n − 3 edges, and every bounded face of a maximal outerplanar graph is a triangle.

Every and has
Every soldier in the army has, somewhere, relatives who are close to starvation.
Every woman has had the experience of saying no when she meant yes, and saying yes when she meant no.
Every detail in his interpretation has been beautifully thought out, and of these I would especially cite the delicious laendler touch the pianist brings to the fifth variation ( an obvious indication that he is playing with Viennese musicians ), and the gossamer shading throughout.
Every calculation has been made independently by two workers and checked by one of the editors.
Every retiring person has a different situation facing him.
Every family of Riviera Presbyterian Church has been asked to read the Bible and pray together daily during National Christian Family Week and to undertake one project in which all members of the family participate.
Every community, if it is alive has a spirit, and that spirit is the center of its unity and identity.
`` Every woman in the block has tried that ''.
: Every set has a choice function.
Every such subset has a smallest element, so to specify our choice function we can simply say that it maps each set to the least element of that set.
** Every surjective function has a right inverse.
** Zorn's lemma: Every non-empty partially ordered set in which every chain ( i. e. totally ordered subset ) has an upper bound contains at least one maximal element.
The restricted principle " Every partially ordered set has a maximal totally ordered subset " is also equivalent to AC over ZF.
** Tukey's lemma: Every non-empty collection of finite character has a maximal element with respect to inclusion.
** Antichain principle: Every partially ordered set has a maximal antichain.
** Every vector space has a basis.
* Every small category has a skeleton.
* Every continuous functor on a small-complete category which satisfies the appropriate solution set condition has a left-adjoint ( the Freyd adjoint functor theorem ).
** Every field has an algebraic closure.
** Every field extension has a transcendence basis.
** Every Tychonoff space has a Stone – Čech compactification.
* Every rectangle R is in M. If the rectangle has length h and breadth k then a ( R ) =
Every unit of length has a corresponding unit of area, namely the area of a square with the given side length.
Every field has an algebraic extension which is algebraically closed ( called its algebraic closure ), but proving this in general requires some form of the axiom of choice.
Every ATM cell has an 8-or 12-bit Virtual Path Identifier ( VPI ) and 16-bit Virtual Channel Identifier ( VCI ) pair defined in its header.

0.508 seconds.