Help


[permalink] [id link]
+
Page "Localization of a ring" ¶ 0
from Wikipedia
Edit
Promote Demote Fragment Fix

Some Related Sentences

Given and ring
* Given an R-module M, the endomorphism ring of M, denoted End < sub > R </ sub >( M ) is an R-algebra by defining ( r · φ )( x ) = r · φ ( x ).
Given a sample of wood, the variation of the tree ring growths provides not only a match by year, it can also match location because the climate across a continent is not consistent.
Given a ring R and a proper ideal I of R ( that is I ≠ R ), I is a maximal ideal of R if any of the following equivalent conditions hold:
Given a Boolean ring R, for x and y in R we can define
Given a ring R and a unit u in R, the map ƒ ( x ) = u < sup >− 1 </ sup > xu is a ring automorphism of R. The ring automorphisms of this form are called inner automorphisms of R. They form a normal subgroup of the automorphism group of R.
Given a ring R and a two-sided ideal I in R, we may define an equivalence relation ~ on R as follows:
Given two such associative unital K-algebras A and B, a unital K-algebra morphism f: A → B is a ring morphism that commutes with the scalar multiplication defined by η, which one may write as
Given a subset V of P < sup > n </ sup >, let I ( V ) be the ideal generated by all homogeneous polynomials vanishing on V. For any projective algebraic set V, the coordinate ring of V is the quotient of the polynomial ring by this ideal.
; Factor ring or quotient ring: Given a ring R and an ideal I of R, the factor ring is the ring formed by the set R / I of cosets
Given a *- ring, there is also the map.
Given a module M over a ring R, an R endomorphism f of M is called an involution if f < sup > 2 </ sup > is the identity homomorphism on M.
Given a ring R and an R-module M, a composition series for M is a series of submodules
Given a module A over a ring R, and a submodule B of A, the quotient space A / B is defined by the equivalence relation
Given an integral domain, let be an element of, the polynomial ring with coefficients in.
Given this closure property for CSAs, they form a monoid under tensor product, compatible with Brauer equivalence, and the Brauer classes are all invertible: the inverse class to that of an algebra A is the one containing the opposite algebra A < sup > op </ sup > ( the opposite ring with the same action by K since the image of K → A is in the center of A ).

Given and R
Given a vector space V over the field R of real numbers, a function is called sublinear if
Given a vector v in R < sup > n </ sup > one defines the directional derivative of a smooth map ƒ: R < sup > n </ sup >→ R at a point x by
Given the space X = Spec ( R ) with the Zariski topology, the structure sheaf O < sub > X </ sub > is defined on the D < sub > f </ sub > by setting Γ ( D < sub > f </ sub >, O < sub > X </ sub >) = R < sub > f </ sub >, the localization of R at the multiplicative system
Given two metric spaces ( X, d < sub > X </ sub >) and ( Y, d < sub > Y </ sub >), where d < sub > X </ sub > denotes the metric on the set X and d < sub > Y </ sub > is the metric on set Y ( for example, Y might be the set of real numbers R with the metric d < sub > Y </ sub >( x, y )
: Given: a function f: A R from some set A to the real numbers
# Given u in W and a scalar c in R, if u = ( u < sub > 1 </ sub >, u < sub > 2 </ sub >, 0 ) again, then cu = ( cu < sub > 1 </ sub >, cu < sub > 2 </ sub >, c0 ) = ( cu < sub > 1 </ sub >, cu < sub > 2 </ sub >, 0 ).
Given a subset S in R < sup > n </ sup >, a vector field is represented by a vector-valued function V: SR < sup > n </ sup > in standard Cartesian coordinates ( x < sub > 1 </ sub >, ..., x < sub > n </ sub >).
: Given two sets, A and T, of equal size, together with a weight function C: A × T → R. Find a bijection f: A → T such that the cost function:

Given and subset
Given a set of integers, does some nonempty subset of them sum to 0?
Given a subset X of a manifold M and a subset Y of a manifold N, a function f: X → Y is said to be smooth if for all p in X there is a neighborhood of p and a smooth function g: U → N such that the restrictions agree ( note that g is an extension of f ).
Given a set S with a partial order ≤, an infinite descending chain is a chain V that is a subset of S upon which ≤ defines a total order such that V has no least element, that is, an element m such that for all elements n in V it holds that m ≤ n.
: Given any set A, there is a set such that, given any set B, B is a member of if and only if B is a subset of A.
Given a bounded sequence, there exists a closed ball that contains the image of ( is a subset of the scalar field ).
Given a set of integers, FIND-SUBSET-SUM is the problem of finding some nonempty subset of the integers that adds up to zero ( or returning the empty set if there is no such subset ).
Given a set of integers, SUBSET-SUM is the problem of finding whether there exists a subset summing to zero.
Given any subset F =
* Rural postman problem: Given is also a subset of the edges.
for every Borel subset U of R. Given a mixed state S, we introduce the distribution of A under S as follows:
Given a topological space X, a subset A of X is meagre if it can be expressed as the union of countably many nowhere dense subsets of X.
Given a subset of the index set, the partial hypergraph generated by is the hypergraph
Given a subset, the section hypergraph is the partial hypergraph
Given a subset V of A < sup > n </ sup >, we define I ( V ) to be the ideal of all functions vanishing on V:
; Generating set: Given a field extension E / F and a subset S of E, we write F ( S ) for the smallest subfield of E that contains both F and S. It consists of all the elements of E that can be obtained by repeatedly using the operations +,-,*,/ on the elements of F and S. If E = F ( S ) we say that E is generated by S over F.
Given a homogeneous prime ideal P of, let X be a subset of P < sup > n </ sup >( k ) consisting of all roots of polynomials in P .< ref > The definition makes sense since if and only if for any nonzero λ in k .</ ref > Here we show X admits a structure of variety by showing locally it is an affine variety.
Given a subset A of G, the measure can be thought of as answering the question: what is the probability that a random element of G is in A?
Given a compact subset K of X and an open subset U of Y, let V ( K, U ) denote the set of all functions such that Then the collection of all such V ( K, U ) is a subbase for the compact-open topology on C ( X, Y ).
Given the partial correspondence between the 1-dimensional Hausdorff measure of a compact subset of and its analytic capacity, it might be

1.578 seconds.