[permalink] [id link]
Page "Integer-valued polynomial" ¶ 0
from Wikipedia
Promote Demote Fragment Fix

Some Related Sentences

mathematics and polynomial
In mathematics, an algebraic number is a number that is a root of a non-zero polynomial in one variable with rational coefficients ( or equivalently — by clearing denominators — with integer coefficients ).
Initially a study of systems of polynomial equations in several variables, the subject of algebraic geometry starts where equation solving leaves off, and it becomes even more important to understand the intrinsic properties of the totality of solutions of a system of equations, than to find a specific solution ; this leads into some of the deepest areas in all of mathematics, both conceptually and in terms of technique.
In mathematics, a Diophantine equation is an indeterminate polynomial equation that allows the variables to be integers only.
In mathematics, Horner's method ( also known as Horner scheme in the UK or Horner's rule in the U. S .) is either of two things: ( i ) an algorithm for calculating polynomials, which consists in transforming the monomial form into a computationally efficient form ; or ( ii ) a method for approximating the roots of a polynomial.
In mathematics, a polynomial is an expression of finite length constructed from variables ( also called indeterminates ) and constants, using only the operations of addition, subtraction, multiplication, and non-negative integer exponents.
In advanced mathematics, polynomials are used to construct polynomial rings, a central concept in abstract algebra and algebraic geometry.
In mathematics, a quadratic equation is a univariate polynomial equation of the second degree.
In mathematics, a transcendental number is a ( possibly complex ) number that is not algebraic — that is, it is not a root of a non-constant polynomial equation with rational coefficients.
* Equally spaced polynomial in mathematics
In mathematics, a Hurwitz polynomial, named after Adolf Hurwitz, is a polynomial whose coefficients are positive real numbers and whose zeros are located in the left half-plane of the complex plane, that is, the real part of every zero is negative.
* Reciprocal polynomial, in mathematics
" One such example of his impact on pure mathematics is his framework for understanding the Jones polynomial using Chern – Simons theory.
In mathematics, a Laurent polynomial ( named
In mathematics, factorization ( also factorisation in British English ) or factoring is the decomposition of an object ( for example, a number, a polynomial, or a matrix ) into a product of other objects, or factors, which when multiplied together give the original.
In mathematics, a Diophantine equation is an equation of the form P ( x < sub > 1 </ sub >, ..., x < sub > j </ sub >, y < sub > 1 </ sub >, ..., y < sub > k </ sub >)= 0 ( usually abbreviated P (,)= 0 ) where P (,) is a polynomial with integer coefficients.
In mathematics, a quadric, or quadric surface, is any D-dimensional hypersurface in ( D + 1 )- dimensional space defined as the locus of zeros of a quadratic polynomial.
In mathematics, if L is a field extension of K, then an element a of L is called an algebraic element over K, or just algebraic over K, if there exists some non-zero polynomial g ( x ) with coefficients in K such that g ( a )= 0.
A quadratic function, in mathematics, is a polynomial function of the form
In mathematics, a polynomial is said to be irreducible if it cannot be factored into the product of two or more non-trivial polynomials whose coefficients are of a specified type.
In mathematics, the Hermite polynomials are a classical orthogonal polynomial sequence that arise in probability, such as the Edgeworth series ; in combinatorics, as an example of an Appell sequence, obeying the umbral calculus ; in numerical analysis as Gaussian quadrature ; in finite element methods as Shape Functions for beams ; and in physics, where they give rise to the eigenstates of the quantum harmonic oscillator.
In mathematics, a polynomial sequence is a sequence of polynomials indexed by the nonnegative integers 0, 1, 2, 3, ..., in which each index is equal to the degree of the corresponding polynomial.
In mathematics, a polynomial sequence, i. e., a sequence of polynomials indexed by
In mathematics before the 1970s, the term umbral calculus referred to the surprising similarity between seemingly unrelated polynomial equations and certain shadowy techniques used to ' prove ' them.

mathematics and also
Blind students also complete mathematical assignments using a braille-writer and Nemeth code ( a type of braille code for mathematics ) but large multiplication and long division problems can be long and difficult.
The axiom of choice has also been thoroughly studied in the context of constructive mathematics, where non-classical logic is employed.
Although the axiom of countable choice in particular is commonly used in constructive mathematics, its use has also been questioned.
It is also commonly used in mathematics in algebraic solutions representing quantities such as angles.
The term may be also used loosely or metaphorically to denote highly skilled people in any non -" art " activities, as well — law, medicine, mechanics, or mathematics, for example.
He also applied mathematics in generalizing physical laws from these experimental results.
Despite being quite religious, he was also interested in mathematics and science, and sometimes is claimed to have contradicted the teachings of the Church in favour of scientific theories.
He was educated at the Collège des Quatre-Nations ( also known as Collège Mazarin ) from 1754 to 1761, studying chemistry, botany, astronomy, and mathematics.
His criticisms of the scientific community, and especially of several mathematics circles, are also contained in a letter, written in 1988, in which he states the reasons for his refusal of the Crafoord Prize.
He is also noted for his mastery of abstract approaches to mathematics and his perfectionism in matters of formulation and presentation.
In mathematics, the axiom of regularity ( also known as the axiom of foundation ) is one of the axioms of Zermelo – Fraenkel set theory and was introduced by.
It can also be used in topics as diverse as mathematics, gastronomy, fashion and website design.
In classical mathematics, analytic geometry, also known as coordinate geometry, or Cartesian geometry, is the study of geometry using a coordinate system and the principles of algebra and analysis.
He won a scholarship to the University and majored in mathematics, and also studied astronomy, physics and chemistry.
His father, Étienne Pascal ( 1588 – 1651 ), who also had an interest in science and mathematics, was a local judge and member of the " Noblesse de Robe ".
In chemistry, physics, and mathematics, the Boltzmann distribution ( also called the Gibbs Distribution ) is a certain distribution function or probability measure for the distribution of the states of a system.
Bioinformatics also deals with algorithms, databases and information systems, web technologies, artificial intelligence and soft computing, information and computation theory, structural biology, software engineering, data mining, image processing, modeling and simulation, discrete mathematics, control and system theory, circuit theory, and statistics.
It can also be used to denote abstract vectors and linear functionals in mathematics.
In mathematics, especially functional analysis, a Banach algebra, named after Stefan Banach, is an associative algebra A over the real or complex numbers which at the same time is also a Banach space.
The term can also be applied to some degree to functions in mathematics, referring to the anatomy of curves.
Combinatorial problems arise in many areas of pure mathematics, notably in algebra, probability theory, topology, and geometry, and combinatorics also has many applications in optimization, computer science, ergodic theory and statistical physics.
It has also given rise to a new theory of the philosophy of mathematics, and many theories of artificial intelligence, persuasion and coercion.
Most undergraduate programs emphasize mathematics and physics as well as chemistry, partly because chemistry is also known as " the central science ", thus chemists ought to have a well-rounded knowledge about science.
Category theory is an area of study in mathematics that examines in an abstract way the properties of particular mathematical concepts, by formalising them as collections of objects and arrows ( also called morphisms, although this term also has a specific, non category-theoretical meaning ), where these collections satisfy some basic conditions.

0.147 seconds.