Help


[permalink] [id link]
+
Page "Homological conjectures in commutative algebra" ¶ 5
from Wikipedia
Edit
Promote Demote Fragment Fix

Some Related Sentences

Let and 0
Let denote the Bézier curve determined by the points P < sub > 0 </ sub >, P < sub > 1 </ sub >, ..., P < sub > n </ sub >.
Let us for simplicity take, then < math > 0 < c =- 2a </ math > and.
" Let X be the unit Cartesian square ×, and let ~ be the equivalence relation on X defined by ∀ a, b ∈ (( a, 0 ) ~ ( a, 1 ) ∧ ( 0, b ) ~ ( 1, b )).
Let X be a topological space, and let x < sub > 0 </ sub > be a point of X.
Let x < sub > 0 </ sub >, ...., x < sub > N-1 </ sub > be complex numbers.
Let A ( k ) be its Fourier transform at time 0:
Let the directrix be the line x = − p and let the focus be the point ( p, 0 ).
Let us assume the bias is V and the barrier width is W. This probability, P, that an electron at z = 0 ( left edge of barrier ) can be found at z = W ( right edge of barrier ) is proportional to the wave function squared,
If V is a real vector space, then we replace V by its complexification V ⊗< sub > R </ sub > C and let g denote the induced bilinear form on V ⊗< sub > R </ sub > C. Let W be a maximal isotropic subspace, i. e. a maximal subspace of V such that g |< sub > W </ sub > = 0.
LET x = rnd * 20! Let the value ' x ' equal a random number between ' 0 ' and ' 20 '
LET y = rnd * 20! Let the value ' y ' equal a random number between ' 0 ' and ' 20 '
:: Let n = 0
Let V and W be vector spaces ( or more generally modules ) and let T be a linear map from V to W. If 0 < sub > W </ sub > is the zero vector of W, then the kernel of T is the preimage of the zero subspace
* The ring of continuous functions from the real numbers to the real numbers is not Noetherian: Let I < sub > n </ sub > be the ideal of all continuous functions f such that f ( x ) = 0 for all x ≥ n. The sequence of ideals I < sub > 0 </ sub >, I < sub > 1 </ sub >, I < sub > 2 </ sub >, etc., is an ascending chain that does not terminate.
Let Then is called not included in the fuzzy set if is called fully included if and is called a fuzzy member if < math > 0 < m ( x ) < 1 .</ math >
Let f be the function which maps database entries to 0 or 1, where f ( ω )= 1 if and only if ω satisfies the search criterion.
Let φ range from 0 to 2π, and let θ range from 0 to π / 2.
Let x < sub > t </ sub > be a curve in a Riemannian manifold M. Denote by τ < sub > x < sub > t </ sub ></ sub >: T < sub > x < sub > 0 </ sub ></ sub > M T < sub > x < sub > t </ sub ></ sub > M the parallel transport map along x < sub > t </ sub >.
Let Δx tend to 0:
Let F < sub > 0 </ sub > be the empty set.
Let ( M, d ) be a metric space, namely a set M with a metric ( distance function ) d. The open ( metric ) ball of radius r > 0 centered at a point p in M, usually denoted by B < sub > r </ sub >( p ) or B ( p ; r ), is defined by
* Let X be a random variable that takes the value 0 with probability 1 / 2, and takes the value 1 with probability 1 / 2.

Let and
Suppose that in a mathematical language L, it is possible to enumerate all of the defined numbers in L. Let this enumeration be defined by the function G: W R, where G ( n ) is the real number described by the nth description in the sequence.
: Theorem on projections: Let the function f: X B be such that a ~ b f ( a )
Let ( A < sub > i </ sub >)< sub > i ∈ I </ sub > be a family of groups and suppose we have a family of homomorphisms f < sub > ij </ sub >: A < sub > j </ sub > A < sub > i </ sub > for all i ≤ j ( note the order ) with the following properties:
* Let the index set I of an inverse system ( X < sub > i </ sub >, f < sub > ij </ sub >) have a greatest element m. Then the natural projection π < sub > m </ sub >: X X < sub > m </ sub > is an isomorphism.
Let V and W be vector spaces over the same field K. A function f: V W is said to be a linear map if for any two vectors x and y in V and any scalar α in K, the following two conditions are satisfied:
Let M and N be ( left or right ) modules over the same ring, and let f: M N be a module homomorphism.
Let F: J C be a diagram of type J in a category C. A cone to F is an object N of C together with a family ψ < sub > X </ sub >: N F ( X ) of morphisms indexed by the objects of J, such that for every morphism f: X Y in J, we have F ( f ) o ψ < sub > X </ sub >
Let F be a diagram that picks out three objects X, Y, and Z in C, where the only non-identity morphisms are f: X Z and g: Y Z.
Let J be a directed poset ( considered as a small category by adding arrows i j if and only if i ≤ j ) and let F: J < sup > op </ sup > C be a diagram.
Let F: J C be a diagram.
Let G and H be groups, and let φ: G H be a homomorphism.
Let T: X X be a contraction mapping on X, i. e.: there is a nonnegative real number q < 1 such that
Let ( M, g ) be a Riemannian manifold and ƒ: M < sup > m </ sup > R < sup > n </ sup > a short C < sup >∞</ sup >- embedding ( or immersion ) into Euclidean space R < sup > n </ sup >, where n ≥ m + 1.
Let U be an open subset of R < sup > n </ sup > and f: U R a function.
Let U, V, and W be vector spaces over the same field with given bases, S: V W and T: U V be linear transformations and ST: U W be their composition.
Let f: < sup > n </ sup > be the fitness or cost function which must be minimized.
Let f: D R be a function defined on a subset D of the real line R. Let I = b be a closed interval contained in D, and let P =

Let and G
* Let H be a group, and let G be the direct product H × H. Then the subgroups
Let G denote the set of bijective functions over A that preserve the partition structure of A: ∀ x ∈ A ∀ g ∈ G ( g ( x ) ∈ ).
Moving to groups in general, let H be a subgroup of some group G. Let ~ be an equivalence relation on G, such that a ~ b ↔ ( ab < sup >− 1 </ sup >H ).
Let f and g be any two elements of G. By virtue of the definition of G, = and =, so that =.
Let G be a set and let "~" denote an equivalence relation over G. Then we can form a groupoid representing this equivalence relation as follows.
Let a, b, and c be elements of G. Then:
Let E be the intersection of the diagonals, and let F be on side DA and G be on side BC such that FEG is parallel to AB and CD.
Let R be a ring and G be a monoid.
Let this point be called G. Point G is also the midpoint of line segment FQ:
Let F and G be a pair of adjoint functors with unit η and co-unit ε ( see the article on adjoint functors for the definitions ).
Let ( G ,.
Let G be a group.
Let S be a subgroup of G, and let N be a normal subgroup of G. Then:
Let G be a group.
Let N and K be normal subgroups of G, with

0.520 seconds.