Help


[permalink] [id link]
+
Page "Büchi automaton" ¶ 11
from Wikipedia
Edit
Promote Demote Fragment Fix

Some Related Sentences

Let and =(
Let ( S, f ) be a game with n players, where S < sub > i </ sub > is the strategy set for player i, S = S < sub > 1 </ sub > × S < sub > 2 </ sub > ... × S < sub > n </ sub > is the set of strategy profiles and f =( f < sub > 1 </ sub >( x ), ..., f < sub > n </ sub >( x )) is the payoff function for x S. Let x < sub > i </ sub > be a strategy profile of player i and x < sub >- i </ sub > be a strategy profile of all players except for player i. When each player i < nowiki >
Let x = ( x < sub > 1 </ sub >, x < sub > 2 </ sub >,…, x < sub > n </ sub >) be a sample of n independent observations from a mixture of two multivariate normal distributions of dimension d, and let z =( z < sub > 1 </ sub >, z < sub > 2 </ sub >,…, z < sub > n </ sub >) be the latent variables that determine the component from which the observation originates.
Let e =( e < sub > α </ sub >)< sub > α = 1, 2 ,..., k </ sub > be a local frame on E. This frame can be used to express locally any section of E. For suppose that ξ is a local section, defined over the same open set as the frame e, then
Let R =( r, θ ) be a point on the curve and let X =( p, α ) be the corresponding point on the pedal curve.
Let P =( x < sub > 1 </ sub >, y < sub > 1 </ sub >) be a point on the curve.
Let P =( X, Y, Z ) be a point on a Hessian elliptic curve E ( K ).

Let and Q
Let Q be a nonsingular quadric surface bearing reguli Af and Af, and let **zg be a Af curve of order K on Q.
* Let Q be a set enclosed between two step regions S and T. A step region is formed from a finite union of adjacent rectangles resting on a common base, i. e. S ⊆ Q ⊆ T. If there is a unique number c such that a ( S ) ≤ c ≤ a ( T ) for all such step regions S and T, then a ( Q )
Let now x ' and y ' be tuples of previously unused variables of the same length as x and y respectively, and let Q be a previously unused relation symbol which takes as many arguments as the sum of lengths of x and y ; we consider the formula
Let the line of symmetry intersect the parabola at point Q, and denote the focus as point F and its distance from point Q as f. Let the perpendicular to the line of symmetry, through the focus, intersect the parabola at a point T. Then ( 1 ) the distance from F to T is 2f, and ( 2 ) a tangent to the parabola at point T intersects the line of symmetry at a 45 ° angle.
Let Q ( x ) denote the number of square-free ( quadratfrei ) integers between 1 and x.
Let Q be P's right child.
Beginning with From Russia with Love in 1963, Llewelyn appeared as Q, the quartermaster of the MI6 gadget lab ( also known as Q branch ), in almost every Bond film until his death ( 17 ), only missing appearances in Live and Let Die in 1973, and Never Say Never Again, the latter of which is not part of the official James Bond film series.
Let Q and R be the points of intersection of these two circles.
Let C be a non-singular algebraic curve of genus g over Q.
Let K be the rational number field Q and
Let Q ( H ) be the expected number of values we have to choose before finding the first collision.
Let h < sub > 0 </ sub > be the hour angle when Q becomes positive.
Let K be a field lying between Q and its p-adic completion Q < sub > p </ sub > with respect to the usual non-Archimedean p-adic norm
|| x ||< sub > p </ sub > on Q for some prime p. Let R be the subring of K defined by

Let and <
Let ( m, n ) be a pair of amicable numbers with m < n, and write m = gM and n = gN where g is the greatest common divisor of m and n. If M and N are both coprime to g and square free then the pair ( m, n ) is said to be regular, otherwise it is called irregular or exotic.
Let denote the Bézier curve determined by the points P < sub > 0 </ sub >, P < sub > 1 </ sub >, ..., P < sub > n </ sub >.
Let P < sub > F </ sub > be the domain of a prefix-free universal computable function F. The constant Ω < sub > F </ sub > is then defined as
Let M be a smooth manifold and let x be a point in M. Let T < sub > x </ sub > M be the tangent space at x.
Let M be a smooth manifold and let x be a point in M. Let I < sub > x </ sub > be the ideal of all functions in C < sup >∞</ sup >( M ) vanishing at x, and let I < sub > x </ sub >< sup > 2 </ sup > be the set of functions of the form, where f < sub > i </ sub >, g < sub > i </ sub >I < sub > x </ sub >.
Let M be a smooth manifold and let f ∈ C < sup >∞</ sup >( M ) be a smooth function.
Let e be the error in b. Assuming that A is a square matrix, the error in the solution A < sup >− 1 </ sup > b is A < sup >− 1 </ sup > e.
Let us for simplicity take, then < math > 0 < c =- 2a </ math > and.

Let and </
Genesis 1: 9 " And God said, Let the waters be collected ". Letters in black, < font color ="# CC0000 "> niqqud in red </ font >, < font color ="# 0000CC "> cantillation in blue </ font >
* Let D < sub > 1 </ sub > and D < sub > 2 </ sub > be directed sets.

Let and >,
Let x < sub > 0 </ sub >, ...., x < sub > N-1 </ sub > be complex numbers.
Let r be a non zero real number and let the r < sup > th </ sup > power mean ( M < sup > r </ sup > ) of a series of real variables ( a < sub > 1 </ sub >, a < sub > 2 </ sub >, a < sub > 3 </ sub >, ... ) be defined as
Let ( X < sub > i </ sub >, f < sub > ij </ sub >) be an inverse system of objects and morphisms in a category C ( same definition as above ).
* Let the index set I of an inverse system ( X < sub > i </ sub >, f < sub > ij </ sub >) have a greatest element m. Then the natural projection π < sub > m </ sub >: X → X < sub > m </ sub > is an isomorphism.
Let x < sub > 1 </ sub >, ..., x < sub > n </ sub > be the sizes of the heaps before a move, and y < sub > 1 </ sub >, ..., y < sub > n </ sub > the corresponding sizes after a move.
Let ( q < sub > 1 </ sub >, w, x < sub > 1 </ sub > x < sub > 2 </ sub >... x < sub > m </ sub >) ( q < sub > 2 </ sub >, y < sub > 1 </ sub > y < sub > 2 </ sub >... y < sub > n </ sub >) be a transition of the GPDA
Let H be a Hilbert space, and let H * denote its dual space, consisting of all continuous linear functionals from H into the field R or C. If x is an element of H, then the function φ < sub > x </ sub >, defined by
Let ( M, g ) be a Riemannian manifold and ƒ: M < sup > m </ sup > → R < sup > n </ sup > a short C < sup >∞</ sup >- embedding ( or immersion ) into Euclidean space R < sup > n </ sup >, where n ≥ m + 1.
* The ring of continuous functions from the real numbers to the real numbers is not Noetherian: Let I < sub > n </ sub > be the ideal of all continuous functions f such that f ( x ) = 0 for all x ≥ n. The sequence of ideals I < sub > 0 </ sub >, I < sub > 1 </ sub >, I < sub > 2 </ sub >, etc., is an ascending chain that does not terminate.
# Let p = ( p < sub > 1 </ sub >, p < sub > 2 </ sub >) and q = ( q < sub > 1 </ sub >, q < sub > 2 </ sub >) be elements of W, that is, points in the plane such that p < sub > 1 </ sub > = p < sub > 2 </ sub > and q < sub > 1 </ sub > = q < sub > 2 </ sub >.
# Let p = ( p < sub > 1 </ sub >, p < sub > 2 </ sub >) be an element of W, that is, a point in the plane such that p < sub > 1 </ sub > = p < sub > 2 </ sub >, and let c be a scalar in R. Then cp = ( cp < sub > 1 </ sub >, cp < sub > 2 </ sub >); since p < sub > 1 </ sub > = p < sub > 2 </ sub >, then cp < sub > 1 </ sub > = cp < sub > 2 </ sub >, so cp is an element of W.

0.467 seconds.