Help


[permalink] [id link]
+
Page "Helmholtz decomposition" ¶ 2
from Wikipedia
Edit
Promote Demote Fragment Fix

Some Related Sentences

Let and F
Let T be a linear operator on the finite-dimensional vector space V over the field F.
Let p be the minimal polynomial for T, Af, where the Af, are distinct irreducible monic polynomials over F and the Af are positive integers.
Let T be a linear operator on the finite-dimensional vector space V over the field F.
Let V be a finite-dimensional vector space over an algebraically closed field F, e.g., the field of complex numbers.
Let N be a positive integer and let V be the space of all N times continuously differentiable functions F on the real line which satisfy the differential equation Af where Af are some fixed constants.
Let V, W and X be three vector spaces over the same base field F. A bilinear map is a function
Let P < sub > F </ sub > be the domain of a prefix-free universal computable function F. The constant Ω < sub > F </ sub > is then defined as
Let F be a prefix-free universal computable function.
Let E be the intersection of the diagonals, and let F be on side DA and G be on side BC such that FEG is parallel to AB and CD.
Let F be the continuous cumulative distribution function which is to be the null hypothesis.
Let F be a field.
Let the line of symmetry intersect the parabola at point Q, and denote the focus as point F and its distance from point Q as f. Let the perpendicular to the line of symmetry, through the focus, intersect the parabola at a point T. Then ( 1 ) the distance from F to T is 2f, and ( 2 ) a tangent to the parabola at point T intersects the line of symmetry at a 45 ° angle.
These assumptions can be summarised as: Let ( Ω, F, P ) be a measure space with P ( Ω )= 1.
Let the input power to a device be a force F < sub > A </ sub > acting on a point that moves with velocity v < sub > A </ sub > and the output power be a force F < sub > B </ sub > acts on a point that moves with velocity v < sub > B </ sub >.
Let P be the following property of partial functions F of one argument: P ( F ) means that F is defined for the argument ' 1 '.
Let F and G be a pair of adjoint functors with unit η and co-unit ε ( see the article on adjoint functors for the definitions ).
Let X be a normed topological vector space over F, compatible with the absolute value in F. Then in X *, the topological dual space X of continuous F-valued linear functionals on X, all norm-closed balls are compact in the weak -* topology.

Let and be
Let the open enemy to it be regarded as a Pandora with her box opened ; ;
Let every policeman and park guard keep his eye on John and Jane Doe, lest one piece of bread be placed undetected and one bird survive.
`` Let him be now ''!!
Let us assume that it would be possible for an enemy to create an aerosol of the causative agent of epidemic typhus ( Rickettsia prowazwki ) over City A and that a large number of cases of typhus fever resulted therefrom.
Let Af be the null space of Af.
Let N be a linear operator on the vector space V.
Let Q be a nonsingular quadric surface bearing reguli Af and Af, and let **zg be a Af curve of order K on Q.
Let us take a set of circumstances in which I happen to be interested on the legislative side and in which I think every one of us might naturally make such a statement.
Let the state of the stream leaving stage R be denoted by a vector Af and the operating variables of stage R by Af.
Let this be denoted by Af.
Let it be granted then that the theological differences in this area between Protestants and Roman Catholics appear to be irreconcilable.
Let not your heart be troubled, neither let it be afraid ''.
The same God who called this world into being when He said: `` Let there be light ''!!
For those who put their trust in Him He still says every day again: `` Let there be light ''!!
Let us therefore put first things first, and make sure of preserving the human race at whatever the temporary price may be ''.
Let her out, let her out -- that would be the solution, wouldn't it??

Let and vector
Let be a Hilbert space and is a vector in.
Let S be a vector space over the real numbers, or, more generally, some ordered field.
Let r ( t ) be a vector that describes the position of a point mass as a function of time.
Theorem: Let V be a topological vector space
Let n denote a complete set of ( discrete ) quantum numbers for specifying single-particle states ( for example, for the particle in a box problem we can take n to be the quantized wave vector of the wavefunction.
Let V and W be vector spaces over the same field K. A function f: V → W is said to be a linear map if for any two vectors x and y in V and any scalar α in K, the following two conditions are satisfied:
If V is a real vector space, then we replace V by its complexification V ⊗< sub > R </ sub > C and let g denote the induced bilinear form on V ⊗< sub > R </ sub > C. Let W be a maximal isotropic subspace, i. e. a maximal subspace of V such that g |< sub > W </ sub > = 0.
Let C be the category of vector spaces K-Vect over a field K and let D be the category of algebras K-Alg over K ( assumed to be unital and associative ).
Let X be a topological vector space over K. Namely, X is a K vector space equipped with a topology so that vector addition and scalar multiplication are continuous.
Let u, v be arbitrary vectors in a vector space V over F with an inner product, where F is the field of real or complex numbers.
Let us now imagine a Lorentz transformation to have been performed on the space and time coordinates, and on the derivative operators, which form a covariant vector.
Let be a list of n linearly independent vectors of some complex vector space with an inner product.
Let V and W be vector spaces ( or more generally modules ) and let T be a linear map from V to W. If 0 < sub > W </ sub > is the zero vector of W, then the kernel of T is the preimage of the zero subspace
Let V be a vector space over a field K, and let be a quadratic form on V. In most cases of interest the field K is either R, C or a finite field.
Let the vector span the parameter space.

0.119 seconds.