Help


[permalink] [id link]
+
Page "Ester" ¶ 30
from Wikipedia
Edit
Promote Demote Fragment Fix

Some Related Sentences

RCOCl and +
: RCOOH + SOCl < sub > 2 </ sub > RCOCl + SO < sub > 2 </ sub > + HCl
: 3 RCOOH + PCl < sub > 3 </ sub > 3 RCOCl + H < sub > 3 </ sub > PO < sub > 3 </ sub >
: RCOOH + PCl < sub > 5 </ sub > RCOCl + POCl < sub > 3 </ sub > + HCl
: RCOOH + ClCOCOCl RCOCl + CO + CO < sub > 2 </ sub > + HCl
: RCOOH + Ph < sub > 3 </ sub > P + CCl < sub > 4 </ sub > RCOCl + Ph < sub > 3 </ sub > PO + HCCl < sub > 3 </ sub >

RCOCl and R
Their formula is usually written RCOCl, where R is a side chain.

+ and R
M2 + sumweight * delta * R # Alternatively, " M2
½ ( pKa < sub > 1 </ sub > + pKa < sub > R </ sub >), where pKa < sub > R </ sub > is the side-chain pKa.
½ ( pKa < sub > R </ sub > + pKa < sub > 2 </ sub >).
* If the balance factor of R is + 1, two different rotations are needed.
: R < sub > 1 </ sub >- CH = CH-R < sub > 2 </ sub > + O < sub > 3 </ sub > R < sub > 1 </ sub >- CHO + R < sub > 2 </ sub >- CHO + H < sub > 2 </ sub > O
: RC ≡ CR + R ' C ≡ CR ' 2 RC ≡ CR '
: Ba + 2 ROH Ba ( OR )< sub > 2 </ sub > + H < sub > 2 </ sub >↑ ( R is an alkyl or a hydrogen atom )
then there are elements x and y in R such that ax + by = d. The reason: the ideal Ra + Rb is principal and indeed is equal to Rd.
) The exterior derivative of a k-form in R < sup > 3 </ sup > is defined as the ( k + 1 )- form from above ( and in R < sup > n </ sup > if, e. g., < math >
Comparison of several forms of disk storage showing tracks ( not-to-scale ); green denotes start and red denotes end .< nowiki >*</ nowiki > Some CD-R ( W ) and DVD-R ( W )/ DVD + R ( W ) recorders operate in ZCLV, CAA or CAV modes.
Two ideals A and B in the commutative ring R are called coprime ( or comaximal ) if A + B = R. This generalizes Bézout's identity: with this definition, two principal ideals ( a ) and ( b ) in the ring of integers Z are coprime if and only if a and b are coprime.
x < sub > n </ sub >, and ( x < sub > i </ sub >, x < sub > i + 1 </ sub >)∈ R or ( x < sub > i + 1 </ sub >, x < sub > i </ sub >)∈ R, i = 1, ..., n-1.

+ and OH
: H < sub > 2 </ sub > O ( l ) + H < sub > 2 </ sub > O ( l ) H < sub > 3 </ sub > O < sup >+</ sup >( aq ) + OH < sup >−</ sup >( aq )
An important class of alcohols are the simple acyclic alcohols, the general formula for which is C < sub > n </ sub > H < sub > 2n + 1 </ sub > OH.
: CH < sub > 2 </ sub >= CH < sub > 2 </ sub > + X < sub > 2 </ sub > + H < sub > 2 </ sub > O </ sub > XCH < sub > 2 </ sub >- CH < sub > 2 </ sub > OH
: CH < sub > 2 </ sub >= CH < sub > 2 </ sub > + H < sub > 2 </ sub > O </ sub > CH < sub > 3 </ sub >- CH < sub > 2 </ sub > OH
: SO < sub > 2 </ sub > + OH · HOSO < sub > 2 </ sub
: NO < sub > 2 </ sub > + OH · HNO < sub > 3 </ sub >
: Cl < sub > 2 </ sub > + 2 OH < sup >–</ sup > ClO < sup >–</ sup > + Cl < sup >–</ sup > + H < sub > 2 </ sub > O
: 2 Dy ( s ) + 6 H < sub > 2 </ sub > O ( l ) 2 Dy ( OH )< sub > 3 </ sub > ( aq ) + 3 H < sub > 2 </ sub > ( g )
: 2 Eu + 6 H < sub > 2 </ sub > O 2 Eu ( OH )< sub > 3 </ sub > + 3 H < sub > 2 </ sub >
: 2 Er ( s ) + 6 H < sub > 2 </ sub > O ( l ) 2 Er ( OH )< sub > 3 </ sub > ( aq ) + 3 H < sub > 2 </ sub > ( g )
: Reduction: 3 e < sup >–</ sup > + 2 H < sub > 2 </ sub > O + MnO < sub > 4 </ sub >< sup >–</ sup > MnO < sub > 2 </ sub > + 4 OH < sup >–</ sup >
: Oxidation: 2 OH < sup >–</ sup > + SO < sub > 3 </ sub >< sup > 2 –</ sup > SO < sub > 4 </ sub >< sup > 2 –</ sup > + H < sub > 2 </ sub > O + 2 e < sup >–</ sup >
: 6 e < sup >–</ sup > + 4 H < sub > 2 </ sub > O + 2 MnO < sub > 4 </ sub >< sup >–</ sup > 2 MnO < sub > 2 </ sub > + 8 OH < sup >–</ sup >

+ and
# H < sub > 3 </ sub > O < sup >+</ sup >( aq ) + Cl < sup >−</ sup >( aq ) + NH < sub > 3 </ sub > Cl < sup >−</ sup >( aq ) + NH < sub > 4 </ sub >< sup >+</ sup >( aq )
# HCl ( benzene ) + NH < sub > 3 </ sub >( benzene ) NH < sub > 4 </ sub > Cl ( s )
# HCl ( g ) + NH < sub > 3 </ sub >( g ) NH < sub > 4 </ sub > Cl ( s )
+
+
Dirac also predicted a reaction + +, where an electron and a proton annihilate to give two photons.
Reactions such as + + ( the two-photon annihilation of an electron-positron pair ) are an example.
The single-photon annihilation of an electron-positron pair, + , cannot occur in free space because it is impossible to conserve energy and momentum together in this process.
: CH < sub > 2 </ sub >= CH < sub > 2 </ sub > + H < sub > 2 </ sub > CH < sub > 3 </ sub >- CH < sub > 3 </ sub >
: CH < sub > 2 </ sub >= CH < sub > 2 </ sub > + Br < sub > 2 </ sub > BrCH < sub > 2 </ sub >- CH < sub > 2 </ sub > Br
: CH < sub > 3 </ sub >- CH = CH < sub > 2 </ sub > + HBr CH < sub > 3 </ sub >- CHBr-CH < sub > 2 </ sub >- H
: 2 CH < sub > 4 </ sub > HC ≡ CH + 3 H < sub > 2 </ sub >
: RC ≡ CR ' + H < sub > 2 </ sub > cis-RCH = CR ' H
: RC ≡ CR ' + 2 Br < sub > 2 </ sub > RCBr < sub > 2 </ sub > CRBr < sub > 2 </ sub >
: PhC ≡ CH + H < sub > 2 </ sub > O PhCOCH < sub > 3 </ sub >

0.118 seconds.