Help


[permalink] [id link]
+
Page "Approach space" ¶ 1
from Wikipedia
Edit
Promote Demote Fragment Fix

Some Related Sentences

Given and metric
Given both Einstein's equations and suitable equations for the properties of matter, such a solution consists of a specific semi-Riemannian manifold ( usually defined by giving the metric in specific coordinates ), and specific matter fields defined on that manifold.
Given metric spaces ( X, d < sub > 1 </ sub >) and ( Y, d < sub > 2 </ sub >), a function f: X → Y is called uniformly continuous if for every real number ε > 0 there exists δ > 0 such that for every x, y ∈ X with d < sub > 1 </ sub >( x, y ) < δ, we have that d < sub > 2 </ sub >( f ( x ), f ( y )) < ε.
Given two metric spaces ( X, d < sub > X </ sub >) and ( Y, d < sub > Y </ sub >), where d < sub > X </ sub > denotes the metric on the set X and d < sub > Y </ sub > is the metric on set Y ( for example, Y might be the set of real numbers R with the metric d < sub > Y </ sub >( x, y )
* Given a positive real number ε, an ε-isometry or almost isometry ( also called a Hausdorff approximation ) is a map between metric spaces such that
Given a coordinate system and a metric tensor, scalar curvature can be expressed as follows
Given a Riemannian manifold with metric tensor, we can compute the Ricci tensor, which collects averages of sectional curvatures into a kind of " trace " of the Riemann curvature tensor.
Given a specified distribution of matter and energy in the form of a stress – energy tensor, the EFE are understood to be equations for the metric tensor, as both the Ricci tensor and scalar curvature depend on the metric in a complicated nonlinear manner.
Given a sequence ( X < sub > n </ sub >, p < sub > n </ sub >) of locally compact complete length metric spaces with distinguished points, it converges to ( Y, p ) if for any R > 0 the closed R-balls around p < sub > n </ sub > in X < sub > n </ sub > converge to the closed R-ball around p in Y in the usual Gromov – Hausdorff sense.
Using tensor calculus, proper time is more rigorously defined in general relativity as follows: Given a spacetime which is a pseudo-Riemannian manifold mapped with a coordinate system and equipped with a corresponding metric tensor, the proper time experienced in moving between two events along a timelike path P is given by the line integral
is also true in the case of compact manifolds, due to Yau's proof of the Calabi conjecture: Given a compact, Kähler, holomorphically symplectic manifold ( M, I ), it is always equipped with a compatible hyperkähler metric.
Given the frame field, one can also define a metric by conceiving of the frame field as an orthonormal vector field.
Given the inverse of the metric tensor above, the explicit form of the kinetic energy operator in terms of Euler angles follows by simple substitution.
Given the metric η, we can ignore the covariant and contravariant distinction for T.
Given a metric space a point is called close or near to a set if
Given a metric on a Lorentzian manifold, the Weyl tensor for this metric may be computed.
Given two tangent vectors u and v at a point x in M, the metric can be evaluated on u and v to give a real number:
Given a manifold M, one looks for the longest product of systoles which give a " curvature-free " lower bound for the total volume of M ( with a constant independent of the metric ).
Given an arbitrary Riemannian metric g on an almost complex manifold M one can construct a new metric g ′ compatible with the almost complex structure J in an obvious manner:

Given and space
* Given any Banach space X, the continuous linear operators A: XX form a unitary associative algebra ( using composition of operators as multiplication ); this is a Banach algebra.
* Given any topological space X, the continuous real-or complex-valued functions on X form a real or complex unitary associative algebra ; here the functions are added and multiplied pointwise.
Given any vector space V over a field F, the dual space V * is defined as the set of all linear maps ( linear functionals ).
Given a topological space X, let G < sub > 0 </ sub > be the set X.
Given a finite dimensional real quadratic space with quadratic form, the geometric algebra for this quadratic space is the Clifford algebra Cℓ ( V, Q ).
Given a vector space V over the field R of real numbers, a function is called sublinear if
Given these two assumptions, the coordinates of the same event ( a point in space and time ) described in two inertial reference frames are related by a Galilean transformation.
Given two Lie algebras and, their direct sum is the Lie algebra consisting of the vector space
Given a basis of a vector space, every element of the vector space can be expressed uniquely as a finite linear combination of basis vectors.
Given infinite space, there would, in fact, be an infinite number of Hubble volumes identical to ours in the universe.
Given a set of training examples of the form, a learning algorithm seeks a function, where is the input space and
Given an operator on Hilbert space, consider the orbit of a point under the iterates of.
Given a point x in a topological space, let N < sub > x </ sub > denote the set of all neighbourhoods containing x.
Given a vector space V and a quadratic form g an explicit matrix representation of the Clifford algebra can be defined as follows.
Given the date of his publication and the widespread, permanent distribution of his work, it appears that he should be regarded as the originator of the concept of space sailing by light pressure, although he did not develop the concept further.
Given an arbitrary topological space ( X, τ ) there is a universal way of associating a completely regular space with ( X, τ ).
Given any embedding of a Tychonoff space X in a compact Hausdorff space K the closure of the image of X in K is a compactification of X.
Given a completely regular space X there is usually more than one uniformity on X that is compatible with the topology of X.
Given any vector space V over K we can construct the tensor algebra T ( V ) of V. The tensor algebra is characterized by the fact:
Given the space X = Spec ( R ) with the Zariski topology, the structure sheaf O < sub > X </ sub > is defined on the D < sub > f </ sub > by setting Γ ( D < sub > f </ sub >, O < sub > X </ sub >) = R < sub > f </ sub >, the localization of R at the multiplicative system

Given and X
: Given any set X of pairwise disjoint non-empty sets, there exists at least one set C that contains exactly one element in common with each of the sets in X.
Given any element x of X, there is a function f < sup > x </ sup >, or f ( x ,·), from Y to Z, given by f < sup > x </ sup >( y ) := f ( x, y ).
Given a subset X of a manifold M and a subset Y of a manifold N, a function f: X → Y is said to be smooth if for all p in X there is a neighborhood of p and a smooth function g: U → N such that the restrictions agree ( note that g is an extension of f ).
* Given any set X, there is an equivalence relation over the set of all possible functions XX.
Given a ( random ) sample the relation between the observations Y < sub > i </ sub > and the independent variables X < sub > ij </ sub > is formulated as
# Given any point x in X, and any sequence in X converging to x, the composition of f with this sequence converges to f ( x )
Given X such that

0.361 seconds.