Help


[permalink] [id link]
+
Page "Lucas–Lehmer primality test" ¶ 1
from Wikipedia
Edit
Promote Demote Fragment Fix

Some Related Sentences

Let and M
Let ( m, n ) be a pair of amicable numbers with m < n, and write m = gM and n = gN where g is the greatest common divisor of m and n. If M and N are both coprime to g and square free then the pair ( m, n ) is said to be regular, otherwise it is called irregular or exotic.
Let M be a smooth manifold and let x be a point in M. Let T < sub > x </ sub > M be the tangent space at x.
Let M be a smooth manifold and let x be a point in M. Let I < sub > x </ sub > be the ideal of all functions in C < sup >∞</ sup >( M ) vanishing at x, and let I < sub > x </ sub >< sup > 2 </ sup > be the set of functions of the form, where f < sub > i </ sub >, g < sub > i </ sub > ∈ I < sub > x </ sub >.
Let M be a smooth manifold and let f ∈ C < sup >∞</ sup >( M ) be a smooth function.
Let r be a non zero real number and let the r < sup > th </ sup > power mean ( M < sup > r </ sup > ) of a series of real variables ( a < sub > 1 </ sub >, a < sub > 2 </ sub >, a < sub > 3 </ sub >, ... ) be defined as
Let M be a ( pseudo -) Riemannian manifold, which may be taken as the spacetime of general relativity.
Let M and N be ( left or right ) modules over the same ring, and let f: M → N be a module homomorphism.
Let M be an n × n Hermitian matrix.
Let P < sup >− 1 </ sup > DP be an eigendecomposition of M, where P is a unitary complex matrix whose rows comprise an orthonormal basis of eigenvectors of M, and D is a real diagonal matrix whose main diagonal contains the corresponding eigenvalues.
Let ( M, g ) be a Riemannian manifold and ƒ: M < sup > m </ sup > → R < sup > n </ sup > a short C < sup >∞</ sup >- embedding ( or immersion ) into Euclidean space R < sup > n </ sup >, where n ≥ m + 1.
Let M and N be smooth manifolds and be a smooth map.

Let and <
Let denote the Bézier curve determined by the points P < sub > 0 </ sub >, P < sub > 1 </ sub >, ..., P < sub > n </ sub >.
Let P < sub > F </ sub > be the domain of a prefix-free universal computable function F. The constant Ω < sub > F </ sub > is then defined as
Let e be the error in b. Assuming that A is a square matrix, the error in the solution A < sup >− 1 </ sup > b is A < sup >− 1 </ sup > e.
Let us for simplicity take, then < math > 0 < c =- 2a </ math > and.

Let and p
Let p be the minimal polynomial for T, Af, where the Af, are distinct irreducible monic polynomials over F and the Af are positive integers.
Let p be an odd prime number.
Let w < sub > j </ sub > be the ' price ' ( the rental ) of a certain factor j, let MP < sub > j1 </ sub > and MP < sub > j2 </ sub > be its marginal product in the production of goods 1 and 2, and let p < sub > 1 </ sub > and p < sub > 2 </ sub > be these goods ' prices.
Let the directrix be the line x = p and let the focus be the point ( p, 0 ).
Let p, q > 2 be two distinct prime numbers.
Let p be an odd prime.
Let π < sub > 2 </ sub >( x ) denote the number of primes p ≤ x such that p + 2 is also prime.
Let X be a random variable with a discrete probability distribution p depending on a parameter θ.
Sylows ' test: Let n be a positive integer that is not prime, and let p be a prime divisor of n. If 1 is the only divisor of n that is equal to 1 modulo p, then there does not exist a simple group of order n.
# Let p = ( p < sub > 1 </ sub >, p < sub > 2 </ sub >) and q = ( q < sub > 1 </ sub >, q < sub > 2 </ sub >) be elements of W, that is, points in the plane such that p < sub > 1 </ sub > = p < sub > 2 </ sub > and q < sub > 1 </ sub > = q < sub > 2 </ sub >.
# Let p = ( p < sub > 1 </ sub >, p < sub > 2 </ sub >) be an element of W, that is, a point in the plane such that p < sub > 1 </ sub > = p < sub > 2 </ sub >, and let c be a scalar in R. Then cp = ( cp < sub > 1 </ sub >, cp < sub > 2 </ sub >); since p < sub > 1 </ sub > = p < sub > 2 </ sub >, then cp < sub > 1 </ sub > = cp < sub > 2 </ sub >, so cp is an element of W.

Let and </
Genesis 1: 9 " And God said, Let the waters be collected ". Letters in black, < font color ="# CC0000 "> niqqud in red </ font >, < font color ="# 0000CC "> cantillation in blue </ font >
* Let D < sub > 1 </ sub > and D < sub > 2 </ sub > be directed sets.

Let and =
Let us for simplicity take m = k as an example.
Let f and g be any two elements of G. By virtue of the definition of G, = and =, so that =.
Let s = x < sub > 1 </ sub > ⊕ ... ⊕ x < sub > n </ sub > and t = y < sub > 1 </ sub > ⊕ ... ⊕ y < sub > n </ sub >.
Let be a non-negative real-valued function of the interval, and let < math > S =
Let us assume the bias is V and the barrier width is W. This probability, P, that an electron at z = 0 ( left edge of barrier ) can be found at z = W ( right edge of barrier ) is proportional to the wave function squared,
If V is a real vector space, then we replace V by its complexification V ⊗< sub > R </ sub > C and let g denote the induced bilinear form on V ⊗< sub > R </ sub > C. Let W be a maximal isotropic subspace, i. e. a maximal subspace of V such that g |< sub > W </ sub > = 0.
LET x = rnd * 20! Let the value ' x ' equal a random number between ' 0 ' and ' 20 '
LET y = rnd * 20! Let the value ' y ' equal a random number between ' 0 ' and ' 20 '
Let A =
:: Let n = 0
:: Let repeat = TRUE
Let ( S, f ) be a game with n players, where S < sub > i </ sub > is the strategy set for player i, S = S < sub > 1 </ sub > × S < sub > 2 </ sub > ... × S < sub > n </ sub > is the set of strategy profiles and f =( f < sub > 1 </ sub >( x ), ..., f < sub > n </ sub >( x )) is the payoff function for x S. Let x < sub > i </ sub > be a strategy profile of player i and x < sub >- i </ sub > be a strategy profile of all players except for player i. When each player i < nowiki >
Let X = " to make something that its maker cannot lift ".
* Let TQBF =
* The ring of continuous functions from the real numbers to the real numbers is not Noetherian: Let I < sub > n </ sub > be the ideal of all continuous functions f such that f ( x ) = 0 for all x ≥ n. The sequence of ideals I < sub > 0 </ sub >, I < sub > 1 </ sub >, I < sub > 2 </ sub >, etc., is an ascending chain that does not terminate.

0.766 seconds.