Help


[permalink] [id link]
+
Page "Reflexive space" ¶ 6
from Wikipedia
Edit
Promote Demote Fragment Fix

Some Related Sentences

Let and denote
Let Af denote the form of Af.
Let denote the Bézier curve determined by the points P < sub > 0 </ sub >, P < sub > 1 </ sub >, ..., P < sub > n </ sub >.
Let X denote a Cauchy distributed random variable.
Let w denote the weight per unit length of the chain, then the weight of the chain has magnitude
Let denote the equivalence class to which a belongs.
Let '~' denote an equivalence relation over some nonempty set A, called the universe or underlying set.
Let G denote the set of bijective functions over A that preserve the partition structure of A: ∀ x ∈ A ∀ g ∈ G ( g ( x ) ∈ ).
Let G be a set and let "~" denote an equivalence relation over G. Then we can form a groupoid representing this equivalence relation as follows.
Let R denote the field of real numbers.
Let n denote a complete set of ( discrete ) quantum numbers for specifying single-particle states ( for example, for the particle in a box problem we can take n to be the quantized wave vector of the wavefunction.
Let ε ( n ) denote the energy of a particle in state n. As the particles do not interact, the total energy of the system is the sum of the single-particle energies.
Let denote the space of scoring functions.
Let the line of symmetry intersect the parabola at point Q, and denote the focus as point F and its distance from point Q as f. Let the perpendicular to the line of symmetry, through the focus, intersect the parabola at a point T. Then ( 1 ) the distance from F to T is 2f, and ( 2 ) a tangent to the parabola at point T intersects the line of symmetry at a 45 ° angle.
Let us denote the time at which it is decided that the compromise occurred as T.
Let denote the sequence of convergents to the continued fraction for.
Let us denote the mutually orthogonal single-particle states by and so on.
That is, Alice has one half, a, and Bob has the other half, b. Let c denote the qubit Alice wishes to transmit to Bob.
Let H be a Hilbert space, and let H * denote its dual space, consisting of all continuous linear functionals from H into the field R or C. If x is an element of H, then the function φ < sub > x </ sub >, defined by
If V is a real vector space, then we replace V by its complexification V ⊗< sub > R </ sub > C and let g denote the induced bilinear form on V ⊗< sub > R </ sub > C. Let W be a maximal isotropic subspace, i. e. a maximal subspace of V such that g |< sub > W </ sub > = 0.
Let Q ( x ) denote the number of square-free ( quadratfrei ) integers between 1 and x.
A possible definition of spoiling based on vote splitting is as follows: Let W denote the candidate who wins the election, and let X and S denote two other candidates.
Let π < sub > 2 </ sub >( x ) denote the number of primes p ≤ x such that p + 2 is also prime.
Let be a sequence of independent and identically distributed variables with distribution function F and let denote the maximum.

Let and topological
Let X be a topological space, and let x < sub > 0 </ sub > be a point of X.
Theorem: Let V be a topological vector space
Let K be a topological field, namely a field with a topology such that addition, multiplication, and division are continuous.
Let X be a topological vector space over K. Namely, X is a K vector space equipped with a topology so that vector addition and scalar multiplication are continuous.
Let X be a normed topological vector space over F, compatible with the absolute value in F. Then in X *, the topological dual space X of continuous F-valued linear functionals on X, all norm-closed balls are compact in the weak -* topology.
Let X be a topological space.
Let X be a topological space.
Let S be a subset of a topological space X.
Let X be a topological space and let x and y be points in X.
Let X be a topological space.
* Let F be a C-valued sheaf on a topological space X.
Let S be a subset of a topological space X.
Let X be a topological space, and let C be a category.
Let X and Y be topological spaces.
Let X be a topological space.
Let G be a discrete group acting on the topological space X.
Let be a connected and locally connected based topological space with base point x, and let be a covering with fiber.
Let G be a topological group.
Let G be a topological group and H a complex Hilbert space.
Let G be a compact topological group, which we assume Hausdorff.
Let be an arbitrary topological space.
Let C be a cover of a topological space X.
Let G be a topological group, and for a topological space X, write b < sub > G </ sub >( X ) for the set of isomorphism classes of principal G-bundles.

0.515 seconds.