Help


[permalink] [id link]
+
Page "Conformal geometry" ¶ 44
from Wikipedia
Edit
Promote Demote Fragment Fix

Some Related Sentences

Let and q
Let ( q < sub > 1 </ sub >, w, x < sub > 1 </ sub > x < sub > 2 </ sub >... x < sub > m </ sub >) ( q < sub > 2 </ sub >, y < sub > 1 </ sub > y < sub > 2 </ sub >... y < sub > n </ sub >) be a transition of the GPDA
Let p, q > 2 be two distinct prime numbers.
Let q < sup >*</ sup >
Let T: X → X be a contraction mapping on X, i. e.: there is a nonnegative real number q < 1 such that
# Let p = ( p < sub > 1 </ sub >, p < sub > 2 </ sub >) and q = ( q < sub > 1 </ sub >, q < sub > 2 </ sub >) be elements of W, that is, points in the plane such that p < sub > 1 </ sub > = p < sub > 2 </ sub > and q < sub > 1 </ sub > = q < sub > 2 </ sub >.
Let q and r denote the inclusion map and the sign map respectively, so that
Let q denote the probability that a given neutron induces fission in a nucleus.
Let ( S, Σ, μ ) be a measure space and let 1 ≤ p, q ≤ ∞ with 1 / p + 1 / q = 1.
Let q be a prime number, s a complex variable, and define a Dirichlet L-function as
Let p < sub > 1 </ sub > and p < sub > 2 </ sub > be any two points on l < sub > 1 </ sub >, and let q < sub > 1 </ sub > and q < sub > 2 </ sub > be any two points on l < sub > 2 </ sub >.
Let q be a quadratic form defined on an n-dimensional real vector space.
Let A be the matrix of the quadratic form q in a given basis.
Let q be the probability of losing ( e. g. for American double-zero roulette, it is 10 / 19 for a bet on black or red ).
Let be the Cartan matrix of the Kac-Moody algebra, and let q be a nonzero complex number distinct from 1, then the quantum group, U < sub > q </ sub >( G ), where G is the Lie algebra whose Cartan matrix is A, is defined as the unital associative algebra with generators ( where λ is an element of the weight lattice, i. e. for all i ), and and ( for simple roots, ), subject to the following relations:
Let this property be represented by just one scalar variable, q, and let the volume density of this property ( the amount of q per unit volume V ) be ρ, and the all surfaces be denoted by S. Mathematically, ρ is a ratio of two infinitesimal quantities:

Let and denote
Let Af denote the form of Af.
Let denote the Bézier curve determined by the points P < sub > 0 </ sub >, P < sub > 1 </ sub >, ..., P < sub > n </ sub >.
Let X denote a Cauchy distributed random variable.
Let w denote the weight per unit length of the chain, then the weight of the chain has magnitude
Let denote the equivalence class to which a belongs.
Let '~' denote an equivalence relation over some nonempty set A, called the universe or underlying set.
Let G denote the set of bijective functions over A that preserve the partition structure of A: ∀ x ∈ A ∀ g ∈ G ( g ( x ) ∈ ).
Let G be a set and let "~" denote an equivalence relation over G. Then we can form a groupoid representing this equivalence relation as follows.
Let R denote the field of real numbers.
Let n denote a complete set of ( discrete ) quantum numbers for specifying single-particle states ( for example, for the particle in a box problem we can take n to be the quantized wave vector of the wavefunction.
Let ε ( n ) denote the energy of a particle in state n. As the particles do not interact, the total energy of the system is the sum of the single-particle energies.
Let denote the space of scoring functions.
Let the line of symmetry intersect the parabola at point Q, and denote the focus as point F and its distance from point Q as f. Let the perpendicular to the line of symmetry, through the focus, intersect the parabola at a point T. Then ( 1 ) the distance from F to T is 2f, and ( 2 ) a tangent to the parabola at point T intersects the line of symmetry at a 45 ° angle.
Let us denote the time at which it is decided that the compromise occurred as T.
Let denote the sequence of convergents to the continued fraction for.
Let us denote the mutually orthogonal single-particle states by and so on.
That is, Alice has one half, a, and Bob has the other half, b. Let c denote the qubit Alice wishes to transmit to Bob.
Let H be a Hilbert space, and let H * denote its dual space, consisting of all continuous linear functionals from H into the field R or C. If x is an element of H, then the function φ < sub > x </ sub >, defined by
If V is a real vector space, then we replace V by its complexification V ⊗< sub > R </ sub > C and let g denote the induced bilinear form on V ⊗< sub > R </ sub > C. Let W be a maximal isotropic subspace, i. e. a maximal subspace of V such that g |< sub > W </ sub > = 0.
Let Q ( x ) denote the number of square-free ( quadratfrei ) integers between 1 and x.
A possible definition of spoiling based on vote splitting is as follows: Let W denote the candidate who wins the election, and let X and S denote two other candidates.
Let π < sub > 2 </ sub >( x ) denote the number of primes p ≤ x such that p + 2 is also prime.
Let be a sequence of independent and identically distributed variables with distribution function F and let denote the maximum.

Let and quadratic
Let R be the quadratic mean ( or root mean square ).
Let V be a vector space over a field K, and let be a quadratic form on V. In most cases of interest the field K is either R, C or a finite field.
Indeed, let K be an imaginary quadratic field with class field H. Let E be an elliptic curve with complex multiplication by the integers of K, defined over H. Then the maximal abelian extension of K is generated by the x-coordinates of the points of finite order on some Weierstrass model for E over H.

0.248 seconds.