Help


[permalink] [id link]
+
Page "Compounds of carbon" ¶ 59
from Wikipedia
Edit
Promote Demote Fragment Fix

Some Related Sentences

Mn and <
" Excitation function for the production of < sup > 262 </ sup > Bh ( Z = 107 ) in the odd-Z-projectile reaction < sup > 208 </ sup > Pb (< sup > 55 </ sup > Mn, n )", Folden et al., LBNL repositories, May 19, 2005.
< sup > 53 </ sup > Cr is the radiogenic decay product of < sup > 53 </ sup > Mn.
Variations in < sup > 53 </ sup > Cr /< sup > 52 </ sup > Cr and Mn / Cr ratios from several meteorites indicate an initial < sup > 53 </ sup > Mn /< sup > 55 </ sup > Mn ratio that suggests Mn-Cr isotopic composition must result from in-situ decay of < sup > 53 </ sup > Mn in differentiated planetary bodies.
* hexacyanides < sup > 3 −</ sup > ( M = Ti, V, Cr, Mn, Fe, Co ), which are octahedral in shape ;
: Unbalanced reaction: Mn < sup > 2 +</ sup >( aq ) + NaBiO < sub > 3 </ sub >( s ) → Bi < sup > 3 +</ sup >( aq ) + MnO < sub > 4 </ sub >< sup >–</ sup >( aq )
: Oxidation: 4 H < sub > 2 </ sub > O ( l ) + Mn < sup > 2 +</ sup >( aq ) → MnO < sub > 4 </ sub >< sup >–</ sup >( aq ) + 8 H < sup >+</ sup >( aq ) + 5 e < sup >–</ sup >

Mn and sub
: 8 H < sub > 2 </ sub > O ( l ) + 2 Mn < sup > 2 +</ sup >( aq ) → 2 MnO < sub > 4 </ sub >< sup >–</ sup >( aq ) + 16 H < sup >+</ sup >( aq ) + 10 e < sup >–</ sup >
: 14 H < sup >+</ sup >( aq ) + 2 Mn < sup > 2 +</ sup >( aq ) + 5 NaBiO < sub > 3 </ sub >( s ) → 7 H < sub > 2 </ sub > O ( l ) + 2 MnO < sub > 4 </ sub >< sup >–</ sup >( aq ) + 5 Bi < sup > 3 +</ sup >( aq ) + 5 Na < sup >+</ sup >( aq )
* One material used for anodic material of nickel-metal hydride batteries is La ( Ni < sub > 3. 6 </ sub > Mn < sub > 0. 4 </ sub > Al < sub > 0. 3 </ sub > Co < sub > 0. 7 </ sub >.

Mn and >
;< sup > 208 </ sup > Pb (< sup > 55 </ sup > Mn, xn )< sup > 263-x </ sup > Bh ( x = 1 )

Mn and 2
Other mineral species having this structure exist, such as tephroite, Mn < sub > 2 </ sub > SiO < sub > 4 </ sub >.
The pyralspite garnets have Al < sup > 3 +</ sup > in the Y position: pyrope ( Mg < sub > 3 </ sub > Al < sub > 2 </ sub >( SiO < sub > 4 </ sub >)< sub > 3 </ sub >, almandine ( Fe < sub > 3 </ sub > Al < sub > 2 </ sub >( SiO < sub > 4 </ sub >)< sub > 3 </ sub >), and spessartine ( Mn < sub > 3 </ sub > Al < sub > 2 </ sub >( SiO < sub > 4 </ sub >)< sub > 3 </ sub >).
* Columbite-Tantalite or Coltan: ( Fe, Mn )( Nb, Ta )< small >< sub > 2 </ sub ></ small > O < small >< sub > 6 </ sub ></ small >
where M = Cu ( n = 1 ) ; Mn ( n = 2 ) ; Fe ( n = 2 ) ; Ni ( n = 2 ).
** Franklinite: ( Fe, Mn, Zn )( Fe, Mn )< sub > 2 </ sub > O < sub > 4 </ sub >
Tantalite ( Fe, Mn ) Ta < sub > 2 </ sub > O < sub > 6 </ sub > is the most important mineral for tantalum extraction.
Tantalite has the same mineral structure as columbite ( Fe, Mn ) ( Ta, Nb )< sub > 2 </ sub > O < sub > 6 </ sub >; when there is more Ta than Nb it is called tantalite and when there is more Nb than Ta is it called columbite ( or niobite ).
Other early structures included copper, calcium fluoride ( CaF < sub > 2 </ sub >, also known as fluorite ), calcite ( CaCO < sub > 3 </ sub >) and pyrite ( FeS < sub > 2 </ sub >) in 1914 ; spinel ( MgAl < sub > 2 </ sub > O < sub > 4 </ sub >) in 1915 ; the rutile and anatase forms of titanium dioxide ( TiO < sub > 2 </ sub >) in 1916 ; pyrochroite Mn ( OH )< sub > 2 </ sub > and, by extension, brucite Mg ( OH )< sub > 2 </ sub > in 1919 ;.

Mn and >(
* Spessartine: Mn < sub > 3 </ sub > Al < sub > 2 </ sub >( SiO < sub > 4 </ sub >)< sub > 3 </ sub >
Spessartine or spessartite is manganese aluminium garnet, Mn < sub > 3 </ sub > Al < sub > 2 </ sub >( SiO < sub > 4 </ sub >)< sub > 3 </ sub >.
** Calderite: Mn < sub > 3 </ sub > Fe < sup > 3 +</ sup >< sub > 2 </ sub >( SiO < sub > 4 </ sub >)< sub > 3 </ sub >
: 4 Mn ( OH )< sub > 2 </ sub >( s ) + O < sub > 2 </ sub >( aq ) + 2 H < sub > 2 </ sub > O → 4 Mn ( OH )< sub > 3 </ sub >( s )

Mn and CO
The group includes Zr -, OH -, Cl -, F -, CO < sub > 3 </ sub >- and possibly also SO < sub > 4 </ sub >- bearing silicates of Na, K, H < sub > 3 </ sub > O, Ca, Sr, REEs, Mn, Fe, Nb and W. Electron vacancies can be present in their structure, too.
Rundle and Dahl discovered that Mn < sub > 2 </ sub >( CO )< sub > 10 </ sub > featured an “ unsupported ” Mn-Mn bond, thereby verifying the ability of metals to bond to one another in molecules.

Mn and )<
;< sup > 209 </ sup > Bi (< sup > 55 </ sup > Mn, xn )< sup > 264 − x </ sup > Hs
An excess of manganese ( II ) salt, iodide ( I < sup >–</ sup >) and hydroxide ( OH < sup >–</ sup >) ions is added to a water sample causing a white precipitate of Mn ( OH )< sub > 2 </ sub > to form.
Some sources claim that Mn ( OH )< sub > 3 </ sub > is the brown precipitate, but hydrated MnO < sub > 2 </ sub > may also give the brown colour.
Generalized formula may be represented as Ba ( Mn < sup > 2 +</ sup >)( Mn < sup > 4 +</ sup >)< sub > 8 </ sub > O < sub > 16 </ sub >( OH )< sub > 4 </ sub > or as ( Ba, H < sub > 2 </ sub > O )< sub > 2 </ sub > Mn < sub > 5 </ sub > O < sub > 10 </ sub >.
* Chloritoid-( Fe, Mg, Mn )< sub > 2 </ sub > Al < sub > 4 </ sub > Si < sub > 2 </ sub > O < sub > 10 </ sub >( OH )< sub > 4 </ sub >
* Pennantite: ( Mn, Al )< sub > 6 </ sub >( Si, Al )< sub > 4 </ sub > O < sub > 10 </ sub >( OH )< sub > 8 </ sub >

Mn and 10
Altura is about 30 miles ENE of Rochester, MN, 10 miles NNW of Lewiston, MN, and about 15 Miles WNW of Winona, Mn
A classic example is a dodecanuclear Manganese molecule with an effective spin of S = 10 derived from antiferromagnetic interaction on Mn ( IV ) metal centres with Mn ( III ) and Mn ( II ) metal centres .< ref >
There were five usable filter positions: 1265 Å-thick Al filter ( 2. 5 Å – 36 Å pass band ), Al / Mg / Mn filter ( 2. 4 Å – 32 Å ), 2. 52 μm Mg filter ( 2. 4 Å – 23 Å ), 11. 6 μm Al filter ( 2. 4 Å – 13 Å ), 119 μm Be filter ( 2. 3 Å – 10 Å ).
* romanechite (( Ba, H < sub > 2 </ sub > O ) Mn < sub > 5 </ sub > O < sub > 10 </ sub >)
** 05. BA With Cu, Co, Ni, Zn, Mg, Mn: 05 Azurite, 10 Chukanovite, 10 Malachite, 10 Georgeite, 10 Pokrovskite, 10 Nullaginite, 10 Glaukosphaerite, 10 Mcguinnessite, 10 Kolwezite, 10 Rosasite, 10 Zincrosasite ; 15 Aurichalcite, 15 Hydrozincite ; 20 Holdawayite, 25 Defernite ; 30 Loseyite, 30 Sclarite
; 10 Bystromite, 10 Ordonezite, 10 Tapiolite -( Fe ), 10 Tapiolite -( Mn ), 10 Tapiolite *, 15a Paramontroseite, 15a Ramsdellite, 15b Akhtenskite, 15c Nsutite ; 20 Scrutinyite ; 25 Ixiolite, 25 Ishikawaite, 25 Srilankite, 25 Samarskite -( Y ), 25 Samarskite -( Yb ), 25 Yttrocolumbite -( Y ); 30 Heftetjernite, 30 Wolframoixiolite *, 30 Krasnoselskite *, 30 Ferberite, 30 Hubnerite, 30 Sanmartinite, 30 Wolframite *; 35 Tantalite -( Mg ), 35 Tantalite -( Fe ), 35 Tantalite -( Mn ), 35 Columbite -( Mg ), 35 Columbite -( Fe ), 35 Columbite -( Mn ), 35 Qitianlingite ; 40 Ferrowodginite, 40 Lithiotantite, 40 Lithiowodginite, 40 Tantalowodginite *, 40 Titanowodginite, 40 Wodginite, 40 Ferrotitanowodginite ; 45 Tivanite, 50 Carmichaelite, 55 Alumotantite, 60 Biehlite

Mn and >,
Columbite, also called niobite, niobite-tantalite and columbate, manganese | Mn ) niobium | Nb < sub > 2 </ sub > oxygen | O < sub > 6 </ sub >, is a black mineral group that is an ore of niobium.
While these DNAzymes have been demonstrated to be useful for constructing logic gates, they are limited by the need for a metal cofactor to function, such as Zn < sup > 2 +</ sup > or Mn < sup > 2 +</ sup >, and thus are not useful in vivo.
Wolframite, ( Fe, Mn ) WO < sub > 4 </ sub >, is an iron manganese tungstate mineral that is the intermediate between ferberite ( Fe < sup > 2 +</ sup > rich ) and huebernite ( Mn < sup > 2 +</ sup > rich ).
Unfortunately, not all the samples are suited for ESR dating: indeed, the presence of cationic impurities such as Mn < sup > 2 +</ sup >, Fe < sup > 2 +</ sup >, or Fe < sup > 3 +</ sup >, humic acids ( organic matter ), can mask the signal of interest, or interfere with it.
Cofactors can be divided into two broad groups: organic cofactors, such as flavin or heme, and inorganic cofactors, such as the metal ions Mg < sup > 2 +</ sup >, Cu < sup >+</ sup >, Mn < sup > 2 +</ sup >, or iron-sulfur clusters.
Many elements will have overlapping peaks ( e. g., Ti K < sub > β </ sub > and V K < sub > α </ sub >, Mn K < sub > β </ sub > and Fe K < sub > α </ sub >).
Tokyoite is a rare barium manganese vanadate mineral with the chemical formula: Ba < sub > 2 </ sub >( Mn < sup > 3 +</ sup >, Fe < sup > 3 +</ sup >) OH ( VO < sub > 4 </ sub >)< sub > 2 </ sub >.
The composition of pure pyrope is Mg < sub > 3 </ sub > Al < sub > 2 </ sub >( SiO < sub > 4 </ sub >)< sub > 3 </ sub >, although typically other elements are present in at least minor proportions -- these other elements include Ca, Cr, Fe and Mn.
One exception is potassium dimanganate ( III ), K < sub > 6 </ sub > Mn < sub > 2 </ sub > O < sub > 6 </ sub >, which contains discrete Mn < sub > 2 </ sub > O anions .< ref name =" Brachtel ">
Instead this oxidation stops at the level of Na < sub > 3 </ sub > MnO < sub > 4 </ sub >, and this Mn ( V ) salt is unstable in solution.

0.302 seconds.