Help


[permalink] [id link]
+
Page "Recursively enumerable set" ¶ 32
from Wikipedia
Edit
Promote Demote Fragment Fix

Some Related Sentences

Given and partial
Given good circumstances one might be able to discern the result of some human activity such as the changing of the Netherlands ' coast or the partial drying out of the Aral Sea, but even that would not be easy.
Given a set S with a partial order ≤, an infinite descending chain is a chain V that is a subset of S upon which ≤ defines a total order such that V has no least element, that is, an element m such that for all elements n in V it holds that m ≤ n.
Given a partial derivative, it allows for the partial recovery of the original function.
Given the particular differential operators involved, this is a linear partial differential equation.
Given a natural number x, h outputs the index of the partial computable function that performs the following computation:
Given a precomplete numbering then for any partial computable function with two parameters there exists a total computable function with one parameter such that
) Given a domain D we define a tuple over D as a partial function
Given a partial isometry V, the deficiency indices of V are defined as the dimension of the orthogonal complements of the domain and range:
Given a subset of the index set, the partial hypergraph generated by is the hypergraph
Given a subset, the section hypergraph is the partial hypergraph
Given two polynomials and, where the α < sub > i </ sub > are distinct constants and deg P < n, partial fractions are generally obtained by supposing that
Given a partial solution to the puzzle, they use dynamic programming within each row or column to determine whether the constraints of that row or column force any of its squares to be white or black, and whether any two squares in the same row or column can be connected by an implication relation.
Given the partial correspondence between the 1-dimensional Hausdorff measure of a compact subset of and its analytic capacity, it might be
Given a sequence, the nth partial sum is the sum of the first n terms of the sequence, that is,
Given a Gödel numbering of recursive functions, there is a primitive recursive function s of two arguments with the following property: for every Gödel number p of a partial computable function f with two arguments, the expressions and are defined for the same combinations of natural numbers x and y, and their values are equal for any such combination.

Given and function
Given any element x of X, there is a function f < sup > x </ sup >, or f ( x ,·), from Y to Z, given by f < sup > x </ sup >( y ) := f ( x, y ).
Given x ∈ A, the holomorphic functional calculus allows to define ƒ ( x ) ∈ A for any function ƒ holomorphic in a neighborhood of Furthermore, the spectral mapping theorem holds:
Given a function f of type, currying it makes a function.
Given a function of type, currying produces.
Given the definition of above, we might fix ( or ' bind ') the first argument, producing a function of type.
Given a function f ∈ I < sub > x </ sub > ( a smooth function vanishing at x ) we can form the linear functional df < sub > x </ sub > as above.
Given a subset X of a manifold M and a subset Y of a manifold N, a function f: X → Y is said to be smooth if for all p in X there is a neighborhood of p and a smooth function g: U → N such that the restrictions agree ( note that g is an extension of f ).
Given a vector space V over the field R of real numbers, a function is called sublinear if
Given a complex-valued function ƒ of a single complex variable, the derivative of ƒ at a point z < sub > 0 </ sub > in its domain is defined by the limit
Given a function f of a real variable x and an interval of the real line, the definite integral
Given that estimation is undertaken on the basis of a least squares analysis, estimates of the unknown parameters β < sub > j </ sub > are determined by minimising a sum of squares function
Given a set of training examples of the form, a learning algorithm seeks a function, where is the input space and
Given an arithmetic function, one can generate a bi-infinite sequence of other arithmetic functions by repeatedly applying the first summation.
Given a function ƒ defined over the reals x, and its derivative ƒ < nowiki > '</ nowiki >, we begin with a first guess x < sub > 0 </ sub > for a root of the function f. Provided the function is reasonably well-behaved a better approximation x < sub > 1 </ sub > is
Given a relation, scaling the argument by a constant factor causes only a proportionate scaling of the function itself.
# Composition operator ( also called the substitution operator ): Given an m-ary function and m k-ary functions:
# Primitive recursion operator: Given the k-ary function and k + 2-ary function:
# Minimisation operator: Given a ( k + 1 )- ary total function:
Given a class function G: V → V, there exists a unique transfinite sequence F: Ord → V ( where Ord is the class of all ordinals ) such that

Given and f
Given two manifolds M and N, a bijective map f from M to N is called a diffeomorphism if both
Given two groups G and H and a group homomorphism f: G → H, let K be a normal subgroup in G and φ the natural surjective homomorphism G → G / K ( where G / K is a quotient group ).
Given a trigonometric series f ( x ) with S as its set of zeros, Cantor had discovered a procedure that produced another trigonometric series that had S ' as its set of zeros, where S ' is the set of limit points of S. If p ( 1 ) is the set of limit points of S, then he could construct a trigonometric series whose zeros are p ( 1 ).
Given f ∈ G ( x * x < sup >- 1 </ sup >, y * y < sup >-1 </ sup >) and g ∈ G ( y * y < sup >-1 </ sup >, z * z < sup >-1 </ sup >), their composite is defined as g * f ∈ G ( x * x < sup >-1 </ sup >, z * z < sup >-1 </ sup >).
Given the laws of exponents, f ( x )
# Given any point x in X, and any sequence in X converging to x, the composition of f with this sequence converges to f ( x )
Given f
Given metric spaces ( X, d < sub > 1 </ sub >) and ( Y, d < sub > 2 </ sub >), a function f: X → Y is called uniformly continuous if for every real number ε > 0 there exists δ > 0 such that for every x, y ∈ X with d < sub > 1 </ sub >( x, y ) < δ, we have that d < sub > 2 </ sub >( f ( x ), f ( y )) < ε.
Given a morphism f: B → A the associated natural transformation is denoted Hom ( f ,–).
Given the space X = Spec ( R ) with the Zariski topology, the structure sheaf O < sub > X </ sub > is defined on the D < sub > f </ sub > by setting Γ ( D < sub > f </ sub >, O < sub > X </ sub >) = R < sub > f </ sub >, the localization of R at the multiplicative system

1.041 seconds.