Help


[permalink] [id link]
+
Page "Ohm's law" ¶ 79
from Wikipedia
Edit
Promote Demote Fragment Fix

Some Related Sentences

Electrons and from
Electrons in an s orbital benefit from closer proximity to the positively charged atom nucleus, and are therefore lower in energy.
Electrons are the charge carriers in metals and they follow an erratic path, bouncing from atom to atom, but generally drifting in the opposite direction of the electric field.
Electrons are extracted from metal electrodes either by heating the electrode, causing thermionic emission, or by applying a strong electric field and causing field electron emission.
Electrons can also be emitted from the electrodes of certain metals when light of frequency greater than the threshold frequency falls on it.
Electrons which diffuse from the cathode into the P-doped layer, or anode, become what is termed " minority carriers " and tend to recombine there with the majority carriers, which are holes, on a timescale characteristic of the material which is the p-type minority carrier lifetime.
: Electrons are transferred from iron reducing oxygen in the atmosphere into water on the cathode, which is placed in another region of the metal.
Electrons flow from the source terminal towards the drain terminal if influenced by an applied voltage.
Electrons are drawn from the anode to the cathode through an external circuit, producing direct current electricity.
Electrons emitted from the filament move several times in back and forth movements around the grid before finally entering the grid.
Electrons can absorb energy from photons when irradiated, but they usually follow an " all or nothing " principle.
Electrons ejected from a solid will generally undergo multiple scattering events and lose energy in the form of collective electron density oscillations called plasmons.
Electrons tunnel from one wire to another through the island.
Electrons from ionized atoms interact mainly with neutral atoms, causing thermal bremsstrahlung radiation.
Electrons then leak from the belt to the upper comb and to the terminal, leaving the belt positively charged as it returns down and the terminal negatively charged.
Electrons can also be completely removed from a chemical species such as an atom, molecule, or ion.
Electrons are able to jump from one band to another.
Synchrotron radiation was named after its discovery in a General Electric synchrotron accelerator built in 1946 and announced in May 1947 by Frank Elder, Anatole Gurewitsch, Robert Langmuir, and Herb Pollock in a letter entitled " Radiation from Electrons in a Synchrotron ".
Electrons in this system are not conserved, but are rather continually entering from oxidized 2H < sub > 2 </ sub > O ( O < sub > 2 </ sub > + 4 H < sup >+</ sup > + 4 e < sup >-</ sup >) and exiting with NADP < sup >+</ sup > when it is finally reduced to NADPH.
Electrons are usually generated in an electron microscope by a process known as thermionic emission from a filament, usually tungsten, in the same manner as a light bulb, or alternatively by field electron emission.
Electrons in solids have a chemical potential, defined the same way as the chemical potential of a chemical species: The change in free energy when electrons are added or removed from the system.
Electrons flow from the negative terminal of the power supply up the negative rail, across the projectile, and down the positive rail, back to the power supply.
Electrons ionized from the neutral gas are not useful in sustaining the negative corona process by generating secondary electrons for further avalanches, as the general movement of electrons in a negative corona is outward from the curved electrode.
Electrons emerging from the accelerator have energies up to 25MeV and are moving an appreciable fraction ( 95-99 + percent ) of the speed of light ( relativistic velocities ).

Electrons and all
Electrons have the least mass of all the charged leptons.
Electrons are those things about which all the statements of the theory are true.
Electrons are reflected from the outside surface of the sheath while all positive ions which reach the sheath are attracted to the electrode.
Electrons appear as a track in the inner detector and deposit all their energy in the electromagnetic calorimeter.

Electrons and these
These he interpreted as " negative-energy electrons " and attempted to identify them with protons in his 1930 paper A Theory of Electrons and Protons However, these " negative-energy electrons " turned out to be positrons, and not protons.
Electrons move quite long distances through proteins by hopping along chains of these cofactors.
Electrons at these states can be easily excited to the conduction band, becoming free electrons, at room temperature.
* Bhees: Beams of High Energy Electrons, these are beams of focused and accelerated electrons with considerable penetrating power.
From Electrons to Elections is a non-partisan resource designed to educate young voters on science, technology, and health issues and provide them with the platforms of the leading political candidates on these subjects.
The various national laboratories are still utilizing thyratron-based 10EE and 13EE / EE1000 machines and Richardson Electronics, as the successor to Electrons Inc, still makes the thyratrons which these machines utilize.
Electrons inside these long focus coils take helical paths as they travel along the length of the tube.
Electrons can be used in these situations, whereas X-rays cannot, because electrons interact more strongly with atoms than X-rays do.

Electrons and resulting
Electrons are delocalized along the conjugated backbones of conducting polymers, usually through overlap of π-orbitals, resulting in an extended π-system with a filled valence band.

Electrons and their
Electrons in the emitters, or the " holes " in the collectors, would cluster at the surface of the crystal where they could find their opposite charge " floating around " in the air ( or water ).
Electrons will be accelerated in the opposite direction to the electric field by the average electric field at their location.
Electrons in the closer orbitals experience greater forces of electrostatic attraction ; thus, their removal requires increasingly more energy.
Electrons ( and positive charge carriers ) come with their own built-in negative feedback.
In 1936, the two published a paper, " The Passage of Fast Electrons and the Theory of Cosmic Showers " in the Proceedings of the Royal Society, Series A, in which they used their theory to describe how primary cosmic rays from outer space interact with the upper atmosphere to produce particles observed at the ground level.
Electrons do not penetrate as deeply into matter as X-rays, hence electron diffraction reveals structure near the surface ; neutrons do penetrate easily and have an advantage that they possess an intrinsic magnetic moment that causes them to interact differently with atoms having different alignments of their magnetic moments.
They ’ ll carry it with them in their future life …. And this future life in the body of eons will be very long, almost as long as the Universe itself .” Suggests Charon, “ the electrons which form my body are not only carriers of what I call ‘ my ’ spirit, but, in fact constitute my spirit itself .” Electrons are sent individually into the Universe to learn and to increase the order of the Universe ; “ the psychic level of the whole Universe progressively elevates itself … during the ‘ successively lived experiences ’ of elemental matter .” The goal of each electron is to increase its energy to the highest level of sustainable excitement ; that is, to contain the most information within the largest stable system of organization possible.
Electrons also have a long ballistic length at this temperature ; their mean free path can be several micrometres.
Electrons were ideal for the role, as they are abundant and easily accelerated to high energies due to their electric charge.
Electrons in such orbitals are strongly localized and therefore easily retain their magnetic moments and function as paramagnetic centers.
# Electrons ( negatively charged ) are knocked loose from their atoms, causing an electric potential difference.

0.244 seconds.