Help


[permalink] [id link]
+
Page "Van de Graaff generator" ¶ 3
from Wikipedia
Edit
Promote Demote Fragment Fix

Some Related Sentences

Electrons and then
Electrons then move spontaneously from donor to acceptor through an electron transport chain.

Electrons and from
Electrons in an s orbital benefit from closer proximity to the positively charged atom nucleus, and are therefore lower in energy.
Electrons are the charge carriers in metals and they follow an erratic path, bouncing from atom to atom, but generally drifting in the opposite direction of the electric field.
Electrons are extracted from metal electrodes either by heating the electrode, causing thermionic emission, or by applying a strong electric field and causing field electron emission.
Electrons can also be emitted from the electrodes of certain metals when light of frequency greater than the threshold frequency falls on it.
Electrons which diffuse from the cathode into the P-doped layer, or anode, become what is termed " minority carriers " and tend to recombine there with the majority carriers, which are holes, on a timescale characteristic of the material which is the p-type minority carrier lifetime.
: Electrons are transferred from iron reducing oxygen in the atmosphere into water on the cathode, which is placed in another region of the metal.
Electrons flow from the source terminal towards the drain terminal if influenced by an applied voltage.
Electrons are drawn from the anode to the cathode through an external circuit, producing direct current electricity.
Electrons emitted from the filament move several times in back and forth movements around the grid before finally entering the grid.
Electrons can absorb energy from photons when irradiated, but they usually follow an " all or nothing " principle.
Electrons ejected from a solid will generally undergo multiple scattering events and lose energy in the form of collective electron density oscillations called plasmons.
Electrons tunnel from one wire to another through the island.
Electrons from ionized atoms interact mainly with neutral atoms, causing thermal bremsstrahlung radiation.
Electrons scatter from all of these, resulting in resistance to their flow.
Electrons can also be completely removed from a chemical species such as an atom, molecule, or ion.
Electrons are able to jump from one band to another.
Synchrotron radiation was named after its discovery in a General Electric synchrotron accelerator built in 1946 and announced in May 1947 by Frank Elder, Anatole Gurewitsch, Robert Langmuir, and Herb Pollock in a letter entitled " Radiation from Electrons in a Synchrotron ".
Electrons in this system are not conserved, but are rather continually entering from oxidized 2H < sub > 2 </ sub > O ( O < sub > 2 </ sub > + 4 H < sup >+</ sup > + 4 e < sup >-</ sup >) and exiting with NADP < sup >+</ sup > when it is finally reduced to NADPH.
Electrons are usually generated in an electron microscope by a process known as thermionic emission from a filament, usually tungsten, in the same manner as a light bulb, or alternatively by field electron emission.
Electrons in solids have a chemical potential, defined the same way as the chemical potential of a chemical species: The change in free energy when electrons are added or removed from the system.
Electrons flow from the negative terminal of the power supply up the negative rail, across the projectile, and down the positive rail, back to the power supply.
Electrons ionized from the neutral gas are not useful in sustaining the negative corona process by generating secondary electrons for further avalanches, as the general movement of electrons in a negative corona is outward from the curved electrode.
Electrons emerging from the accelerator have energies up to 25MeV and are moving an appreciable fraction ( 95-99 + percent ) of the speed of light ( relativistic velocities ).

Electrons and upper
In 1936, the two published a paper, " The Passage of Fast Electrons and the Theory of Cosmic Showers " in the Proceedings of the Royal Society, Series A, in which they used their theory to describe how primary cosmic rays from outer space interact with the upper atmosphere to produce particles observed at the ground level.

Electrons and charged
Electrons have the least mass of all the charged leptons.
Electrons, within an electron shell around an atom, tend to distribute themselves as far apart from each other, within the given shell, as they can ( due to each one being negatively charged ).
Electrons are charged particles ( point charges with rest mass ).
# Electrons ( negatively charged ) are knocked loose from their atoms, causing an electric potential difference.
Electrons and positrons can be discriminated from other charged particles using the emission of transition radiation, X-rays emitted when the particles cross many layers of thin materials.

Electrons and down
Electrons emitted at any point are accelerated a modest distance down the funnel before impacting the surface, perhaps on the opposite side of the funnel.

Electrons and .
Electrons that are bound to atoms possess a set of stable energy levels, or orbitals, and can undergo transitions between them by absorbing or emitting photons that match the energy differences between the levels.
Electrons form notional shells around the nucleus.
Electrons that populate a shell are said to be in a bound state.
# Electrons jump between orbitals in a particle-like fashion.
These he interpreted as " negative-energy electrons " and attempted to identify them with protons in his 1930 paper A Theory of Electrons and Protons However, these " negative-energy electrons " turned out to be positrons, and not protons.
Electrons ( the other major component of the atom ) are leptons.
Electrons were first discovered as the constituents of cathode rays.
Electrons are responsible for emission of most EMR because they have low mass, and therefore are easily accelerated by a variety of mechanisms.
Electrons are at the heart of cathode ray tubes, which have been used extensively as display devices in laboratory instruments, computer monitors and television sets.
Electrons are bound by electromagnetic wave mechanics into orbitals around atomic nuclei to form atoms, which are the building blocks of molecules.
Electrons flow in the external circuit.
Electrons in this state are 45 % likely to be found within the solid body shown.
His most noted publication was the famous 1919 article " The Arrangement of Electrons in Atoms and Molecules " in which, building on Gilbert N. Lewis's cubical atom theory and Walther Kossel's chemical bonding theory, he outlined his " concentric theory of atomic structure ".
Electrons are particulate radiation and, hence, have cross section many times larger than photons, so that they do not penetrate the product beyond a few inches, depending on product density.
Electrons that belong to different molecules start " fleeing " and avoiding each other at the short intermolecular distances, which is frequently described as formation of " instantaneous dipoles " that attract each other.
Electrons and how they interact with electromagnetic fields are important in our understanding of chemistry and physics.

0.155 seconds.